Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India

Mallick J, Rahman A, Singh C K
Advances in Space Research Vol. 52, Issue 4, 15 August 2013, pp. 639-655
2013

The present study is an assessment and identification of urban heat island (UHI) in the environment of one of the fastest urbanizing city of India, Delhi Metropolis, employing satellite image of ASTER and Landsat 7 ETM+ in the thermal infrared region 3-14 ?m. Temporal (2001 and 2005) ASTER datasets were used to analyze the spatial structure of the thermal urban environment subsequently urban heat island (UHI) in relation to the urban surface characteristics and land use/land cover (LULC). The study involves derivation of parameters governing the surface heat fluxes, constructing statistics of ASTER thermal infrared images along with validation through intensive in situ measurements. The average images reveal spatial and temporal variations of land surface temperature (LST) of night-time and distinct microclimatic patterns. Central Business District (CBD) of Delhi, (Connaught Place, a high density built up area), and commercial/industrial areas display heat islands condition with a temperature greater than 4 °C compared to the suburbs. The small increase in surface temperature at city level is mainly attributed to cumulative impact of human activities, changes in LULC pattern and vegetation density. In this study the methodology takes into account spatially-relative surface temperatures and impervious surface fraction value to measure surface UHI intensity between the urban land cover and rural surroundings. Both the spatial and temporal variation in surface temperature associated with impervious surface area (ISA) has been evaluated to assess the effect of urbanization on the local climate.

Region
Tags
Urban heat island
ASTER
Impervious surface area
Emissivity