Expression in rice of an autoactive variant of Medicago truncatula DMI3, the Ca+2 / calmodulin-dependent protein kinase from the common symbiotic pathway modifies root transcriptome and improves mycorrhizal colonization 

Ortiz-Berrocal Marlene , Lozano Luis , Sánchez-Flores Alejandro, Nava Noreide , Hernández Georgina, Reddy Pallavolu M.
Plant Biotechnology Reports, Vol11 (5): 271-287p.
2017

Rice is the principle staple food for more than half of humankind. Frequently, productivity of rice is affected by low nitrogen in the soil and hence, for enhanced rice production it heavily relies on synthetic nitrogen fertilizers that beget economic and ecological costs. In this context, the interest in transferring legume-like biological nitrogen fixation capability to rice has increased lately. The rice-arbuscular mycorrhizal (AM) symbiosis is mediated by genes that are orthologous to legume-genes known to be essential constituents of the common symbiotic pathway (CSP) that facilitates the establishment of both rhizobial nitrogen fixation- and AM-symbioses in legumes. Particularly, DMI3 (Ca+2/calmodulin-dependent serine/threonine protein kinase, CCaMK), a component of the CSP, was found to play a paramount role in promoting the development of both types of symbioses. In fact, expression of autoactive version of DMI3 was shown to be sufficient to trigger downstream developmental processes leading to the induction of spontaneous nodulation in the absence of rhizobia. Hence, in the present investigation, we expressed in transgenic rice a gain-of-function Medicago truncatula DMI3 T271D gene (gofMtDMI3) and assessed if legume-like symbiotic responses can be mimicked in rice roots. Ectopic expression of gofMtDMI3 in common bean induced spontaneous nodulation in the roots in the absence of rhizobia, but in rice plants it did not produce any such legume-like nodular manifestations. Conversely, the expression of gofMtDMI3 supported elevated AM colonization in rice roots that could improve plant nutrition/growth. In addition, gofMtDMI3 expression induced higher transcript levels of the CSP orthologues OsDMI3, OsIPD3 and OsNSP1, as well as triggered changes in the expression of several genes involved in biotic and abiotic stress responses. Our results with gofMtDMI3 lay the basis for the potential development of a biotechnological approach towards improvement of rice production.

Region
Tags
Rice
Medicago truncatula DMI3
Mycorrhizal colonization