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1. Background 

Rapidly growing economy and migration of population to urban areas in India are the main 

drivers for degradation of ambient air quality (AAQ) and associated health impacts in the 

urban areas. According to WHO, Indian cities like Delhi, Gwalior, Raipur and Lucknow are 

among the top 100 most polluted cities in the world in terms of ambient PM10 

concentrations (WHO, 2014). Various health studies conducted in India have evidently 

shown that the deteriorating ambient air quality results in significant health impacts 

(Cropper et al., 1997; Guttikunda and Goel, 2000; Kandlikar and Ramachandran, 2000; 

Dholakia et al., 2013). Figure 1 shows that air pollutant levels in most Indian cities where air 

quality monitoring is carried out, are above the prescribed national ambient air quality 

standards.  

 

Figure 1 Annual average PM10 concentrations in 2017 across Indian cities 

Source:  NAMP, CPCB  

 

In response to the growing concern around air pollution, the Government of India has taken 

several measures for control. Government has launched the National Clean Air Program in 

2019, with an objective of reducing PM concentrations by 20-30% by 2024. Government has 

been aggressively promoting clean cooking in rural households through three major 

schemes: - Pradhan Mantri Ujjwala Yojana, Unnat Chulha Abhiyan and National Biogas and 

Manure Management Programme. In the transport sector some of the recent initiatives at the 

National level include introduction of BS IV norms in 2017 and rescheduling 

implementation of BS VI norms in the country from 2020. In addition, stricter stack emission 

norms have been developed for power plants, which are yet to be implemented. 

Despite these efforts, the air pollution has remained high in several cities. The problem is 

more acute in specific zones of the cities due to presence of local sources. Presently, there is 

no mechanism in place to assess the spatial distributions of pollutant levels in cities and 

moreover, there is no forecasting system in most cities to know and prepare for an 

upcoming episode of high air pollution. Considering the enormity of the problem, it 
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becomes very important to understand the spatial distribution of air quality in the city and 

forecasts for coming days to identify effective measures for mitigation and reducing the 

exposure of residents to high levels of pollution levels in urban areas. In order to minimize 

the exposure to high concentrations of air pollution one should know the present air quality 

levels and should also be aware about probable air quality scenario of the next few days in 

advance. Evidently, this will require the knowledge of todays and forecasted air pollutant 

levels at all places in a city at a very high resolution.  

Monitoring stations in different cities provide air pollutant concentrations only for specific 

locations in the city and rest of the city remains devoid of the air quality data. Moreover, 

there is no mechanism to forecast air quality in most of the cities to know in advance the air 

quality levels. TERI proposed this project which aimed to map air quality level in a typical 

city in India, like Delhi, and identify air quality hotspots using datasets generated by 

existing monitoring stations. The project also aimed to generate forecasts of air quality at the 

monitoring stations in Delhi for next few days , which can act as an early warning system for 

the citizens and relevant authorities to take adaptive measures for reducing the exposure to 

severely high episodic air pollutant concentrations.  

Based on the data of measurements carried out at the  stations in Delhi, spatial air quality 

maps can be developed with limited resources and can be made available on-line in almost 

real time basis. These maps not only provide air quality values at all locations in the city, but 

can also be useful in assessing the exposure of pollutants to residing population. This can 

lead to enhanced sensitization of general public and other stakeholders and will also help 

the policy makers to adjudge the impact of any interventions they make on spatial air 

quality levels in the whole city.  Similarly, forecasting of air quality for next few days has 

now become possible through application of forecasting techniques. Forecasting models can 

predict the air quality in a region reasonably well so that mitigative/adaptive measures can 

be taken in advance to tackle the problem. Based on the proposal submitted to CPCB, TERI 

has been awarded the project of “Evaluation of modelling techniques for air quality 

management in Delhi”. This project aimed at testing the air quality models for generating 

spatial maps of air quality and short term air quality forecasts. TERI (India) and VITO 

(Belgium) have signed a MoU to work jointly on a number of activities related to 

environmental protection. TERI with support by VITO have tested these models in Indian 

cities for generation of spatial air quality maps and air quality forecasts.   

2. Objectives  

The main objectives of the study are: 

 Spatial mapping of pollutants in the city using existing monitoring datasets  

 Identification of air pollution hotspots in the city  

 Air quality forecasting and public advisories at the selected hotspots  
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3.  Methodology 

3.1 Spatial mapping and identification of air pollution hotspots 

The purpose of spatial mapping is to estimate concentrations of air pollutants in areas 

devoid of any air quality monitors, based on concentrations measured at other locations. The 

overall approach followed in the project is presented in Figure 2. 

 

Figure 2 Broad methodology for spatial mapping model 

The basic assumption of RIO model (developed by VITO) is that the concentrations of air 

pollutants are somewhat dependent on the land use pattern or any other parameter like 

population distribution, emission distribution, etc. in the city. The basic way to define 

categorize land use pattern (which is used as the parameter to affect air quality in this study)  

is – urban and rural. However, the land use pattern was categorized in much more detail by 

(Janssen et al. 2008). The land use pattern is divided into different categories (such as 

Continuous urban fabric, Discontinuous urban fabric , Industrial and commercial units , 

Road and rail networks , Airports , Construction sites , Agricultural areas , Forest and semi 

natural areas, Wetlands and water-bodies etc.). The model primarily interpolates values 

between the stations, however, interpolation of air quality requires spatial homogeneity. A 

β-indicator is assigned to each of the eleven landuse categories based on their possible 

influences on air quality. Hourly and daily air pollutant concentrations for pollutants like 

PM10, PM2.5, NOx, and Ozone are collected from CPCB and DPCC network for the whole 

year 2015-17, and 2018 (Jan-Dec). These β-indicators were first optimised to derive 
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maximum correlation with the pollutant concentrations. RIO is an interpolation model that 

can be classified as a detrended Kriging model. In a first step the local characteristics of the 

air pollution sampling values is removed in detrending procedure. Subsequently the site 

independent data is interpolated by an ordinary Kriging scheme. Finally in retrending step a 

local bias is added to the Kriging interpolation results. Finalised β-values are then used to 

detrend concentrations of air pollutants to achieve spatial homogeneity for interpolation. 

The detrended (xdet) value can be obtained using equation 1.  

Xdet= (x-[x])(σref/ σβ) + [x]  ……………………(1) 

Where [x] is the mean concentration of the pollutant, σref is the standard deviation of 

reference value which is chosen arbitrarily (as random sampling eliminates bias by giving all 

individuals an equal chance to be chosen, it removes systematic bias) and σβ is the standard 

deviation of the β indicator. The reasons for choosing arbitrarily are  

These detrended values are then spatially homogenous and can be interpolated using 

improved Kriging interpolation technique. Through this technique, RIO construct 

correlation function using time averaged values for interpolation model. Finally, in the 

interpolated grids, retrending is done in the same way to account for local character of the 

grids. The interpolated concentrations are validated for some of the locations by ‘leaving one 

out’ approach. Once the model is validated, spatial maps of air pollutant concentrations are 

generated. In this study, maps are prepared for different pollutants under different model 

(β-optimisation) scenarios for two different years 2015-17 and 2018  for the city of Delhi. 

Dataset for the year 2018 was separately assessed and tested, as there were many stations 

which were added to the network in this year. The results of RIO model can be overlaid on 

Google maps/earth for clean identification of areas with deteriorated air quality. This will 

help in identifying highly polluted areas/ hotspots in Delhi in different seasons of the year. 

PM2.5 and PM10 being the pollutant of concern, the focus has been kept on spatial mapping of 

these two pollutants.  

3.2  Air quality forecasting and public advisories at the selected hotspot  

The main objective of this exercise is to predict the future pollutant concentration at the 

selected hotspots based on reliable input variables. However, input variables are usually 

multidimensional and the functional relationship with the target value to be predicted is 

usually unknown; and most likely non-linear, this makes it difficult to use the traditional 

parametric regression technique. 

Artificial neural network (ANN) has to be designed for each monitoring site to fit a function 

between chosen inputs and target values. ANN systems are computing systems that are 

inspired by, but not necessarily identical to the biological neural network. Such system 

“learns’ to perform tasks by considering examples or previous data sets. Large amounts of 

historical dataset would be required for this purpose. A part of the dataset would be used to 

train the neural network and the rest of the dataset would be used to validate the accuracy 

of the NN.  The broad methodology for development of forecasting model for the city is 

shown in Figure 3.  
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Figure 3 Broad methodology for application of forecasting model 

The most crucial part of this exercise would be selection of appropriate input variables. For 

example, data on meteorological parameters like wind speed, wind direction, temperature 

etc. will be required for estimating concentrations of pollutants at a particular location. In 

addition, pollutants are also dispersed vertically in the atmosphere. Thus the concentration 

of pollutant on ground (target value in this case) is also dependent on the stability of the 

atmosphere.    

All these parameters are tested in case of Delhi for prediction of pollutant concentrations. 

Past data of pollutants is correlated with these meteorological parameters and the 

parameters which showed the best performance are used for forecasting of air quality at 

specific stations in Delhi. Best performances are judged by hit and trial method. First few 

variables are chosen; air quality was forecasted and validated. This step was performed 

number of times to achieve the final set of variables. Daily forecasted values of the 

meteorological parameters are collected from global; simulation products (European Centre 

for Medium-range Weather Forecasts (ECMWF)). These forecasts for meteorological 

variables are used to compute the forecasted values of PM using neural network approach.  

PM (day 1) = f (input parameters like PM (past days) , Forecasted met parameters (Boundary 

layer, wind speed , direction, temperature , day of week ) day 1 

The forecasted values are first validated against the observations. Relevant performance 

metrics like coefficient of correlation, Root Mean Square Error (RMSE), index of agreement 

are used to assess the performance of the forecasting model. Once fully validated, the model 

can start providing forecasts on a daily basis.  
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3.3 Models for spatial mapping and forecasting  

Spatial Mapping  

Air quality is measured at a few selected locations in Indian cities; attempts have been made 

across the world to map the concentrations of air pollutants in the space between these 

stations, based on the information provided by monitoring instruments at the stations. At a 

regional scale, variations in air pollutant concentrations are mainly due to meteorological 

conditions (Tombette and Sportisse, 2007; Mensink et al.,2007), while at urban scale it is 

deeply influenced by local emission sources (Vautard et al., 2007). Inverse distance 

weighting (IDW) is perhaps the most basic technique for spatial mapping (Isaaks and 

Srivastava, 1989). The IDW methodology allocates weight to the monitoring stations. This 

weight is determined by the user based on the distance of, and between the monitoring sites. 

The approximate concentration of pollutants is then obtained at the required site by the sum 

of products of pollutant concentrations at monitoring locations and weights associated with 

them. Although the technique is simple and reasonable, it is has weaknesses in the 

assumption. First of all, the decay function (weightage) is based on the power law of the 

distance between the monitoring location and the site of the air pollution interpolation. This 

power is chosen on an ad-hoc basis rather than character of the phenomenon. Secondly, 

monitoring locations close to one another are bound to have similar air quality monitoring 

values. A good interpolation model must somehow account for this factor. However, IDW 

only takes into account the distance between the monitoring locations and the interpolation 

site. Also, IDW assumes spatial homogeneity and does not incorporate the possibility of 

spatial trend (topography).  

For improvement, a number of different spatial mapping models for air quality have been 

developed around the world. Ross et al. (2006) developed regression equation to predict fine 

particulate matter using parameters like urbanization, land use pattern, population density 

and industrialisation. In fact, most of the spatial maps of air quality have been developed in 

some regions of the world in past using interpolation models (Ross et al., 2007; Arain et al., 

2007; Denby et al., 2005) based on different variants of the Kriging technique along with the 

use of landuse datasets. Broadly based on Kriging technique, the RIO model was developed 

and implemented in Belgium for spatial mapping of pollutants like PM, NOx and Ozone 

(Janssen, 2008). The RIO model ‘detrends’ or removes the local characteristics from the 

measured values, which results in spatial homogeneity. These values are then interpolated 

using the Kriging technique and finally ‘retrended’ on the local map. The RIO model 

incorporates a wide range of land use pattern, much beyond the basic rural and urban 

divisions. As a result, the model has shown to predict much more accurate results as 

compared to IDW and ordinary Kriging interpolation (Janssen, 2008).  

Forecasting  

Air quality forecasting is of importance to both policymakers and general public. A number 

of methodologies have been evolved in order to forecast air quality – Persistence, 

Climatology, Criteria, CART, 

 Regression, Neural Network, 3-D air quality models, and Phenomenological demonstrated 

the use of chemical transport modelling system for prediction of air quality. The technique is 
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data intensive and requires collection of variables of meteorology, activity data, emissions of 

pollutants from sources like industries, transport, biomass burning and so on. This 

methodology has an advantage that not just it predicts air quality in areas without air 

quality monitors but also helps in improving the understanding chemistry behind pollutant 

formation and dispersion processes. However, for accurate prediction of air quality, this 

technique requires high resolution high quality input data and high speed computing 

infrastructure for calculations, making it limited to be used.   

Air quality can also be forecasted by developing regression equations in which pollutant 

concentration  is calculated from several dependent variables like air quality in past days, 

temperature, wind speed and so on.  Although development of regression model requires 

knowledge of the behaviour of the pollutants, variables affecting the pollutants, and 

execution techniques of regression models, the accuracy of regression model is highly 

dependent on the accuracy of the input variables.  

(Artificial) neural networks (NN) have been used in many parts of the world for the purpose 

of forecasting. They are known for their high capabilities to make regressive approximations 

of nonlinear functions in spaces.  Gardner and Dorling (1998) shows the different research 

studies using NN as tools for forecasting of air pollutants like ozone, sulphur dioxide and 

carbon monoxide. While deterministic tools demand huge sets of input data and 

computational facilities, NN are less data, time, and resource intensive, however, they are 

not useful in explaining the science behind the forecasted values and are site-specific. There 

are several studies that have proved NN to be an effective method for prediction of PM 

concentrations (Nagendra et al, 2005), Perez and Reyes, 2002, Lu et al. 2003, Kukkonen et al. 

2003, Ordieres et al. 2005).   

Based on the measurements carried out at the existing monitoring stations in a city, air 

quality forecasts can be made using the NN technique. Forecasts can be made available for 

next 2-3 days with limited resources and can be made available on-line. Forecasts of the 

pollutant can provide early warnings to the residents and regulators to take proactive 

adaptive actions. This can also lead to enhanced sensitization of general public and other 

stakeholders and will also help the policy makers to plan policies that can take care of 

pollution levels during the high episodes of pollution.   

Hooyberghs et al, 2005 shows the successful implementation of the forecasting model based 

on neural networks for daily averaged PM10 concentrations in Belgium. TERI has built its 

capacity in running the OVL model developed by VITO and propose to implement and test 

this model in the Delhi city for generation of daily forecasts of air pollutant concentrations. 

The forecasting model can generate daily forecasts of air quality in Indian cities with limited 

resources, by making use of existing network of air quality measurement. These forecasts 

can also be generated by making use of chemical transport models which are based on 

emission inventories and are time and resource intensive. Alternatively, this model makes 

use of existing monitoring infrastructure to predict the air quality with satisfactory accuracy.    

3.4 Study region 

Delhi city has been selected as the study domain (Figure 4). Delhi being the capital city 

accommodates a huge population base of about 16.8 million. The city population has grown 

at a higher rate than the national average mainly because of extensive migration towards the 
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city. The city houses populations of different classes, varying from high income groups to 

people living in slums. The registered vehicular population in the city has grown from about 

3 million in 1998 to about 10 million in 2017; with more than 60% of them are two-wheelers. 

Other than the vehicles registered in the Delhi city, there is a large in and out movement of 

vehicles from its surrounding towns like Gurgaon, Faridabad, Sonepat, Ghaziabad, and 

Noida.  Delhi also has few power plants based on gaseous fuels. Other than these, there are 

power plants based on coal and gaseous fuels in the surrounding towns. Though, less in 

Delhi, there are frequent power cuts in other parts of NCR which leads to usage of standby 

power sources like diesel generators. There not many polluting industries in Delhi as most 

of them have been shifted to the outside regions. However, there is significant industrial fuel 

consumption in neighboring districts of Panipat, Merrut, Faridabad, Ghaziabad etc. With 

limited standards of NOx, NMVOCs and CO, emissions are released uncontrolled from 

many of these sources. Biomass burning is another big source which contributes to 

deterioration of air quality in Delhi. Not many in Delhi, but several households in NCR use 

biomass as fuel for cooking purposes. Moreover, post harvesting, agricultural residues are 

being burnt in the fields to prepare the lands for the next crop. Road dust, construction 

activities, and refuse burning are the other contributors to pollutant levels in the city.  
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Figure 4 Study-domain – Delhi city 

Source: Google maps  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Trends of air quality in Delhi city 
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As seen from Figure 5, the number of registered vehicles in Delhi has grown tremendously 

over the past decade, crossing over nine million in 2015. However, a decline in PM10 

concentration has been witnessed during 1999 to 2005, due to implementation of several 

control measures in transport and other sectors. However, after that a sharp increase in PM10 

concentrations has been observed. The concentration of NOx has consistently gone up and 

shows a good correlation with increase in number of vehicles. On the other hand, the levels 

of SO2 were found to be decreasing with decrease in sulphur content in automotive fuels. 

The population growth, urbanization, growing activity levels in Delhi have resulted in 

corresponding increase in energy demand and henceforth air pollution from both stationary 

and mobile sources. As evident from the regular AAQ monitoring conducted in Delhi by 

CPCB and DPCC, the air pollution levels in Delhi have consistently been exceeding the AAQ 

standards especially in terms of PM2.5 and PM10 concentrations. The major sources that are 

responsible for deteriorating ambient air quality in Delhi have been assessed through 

various source apportionment studies. The CPCB source apportionment study conducted in 

2010 reported re-suspended dust (45%) as the largest contributor of PM10 in the city followed 

by waste burning (14%), transport (14%), DG sets (9%),industries (8%) and domestic cooking 

(7%).  The study conducted by IIT Kanpur in 2015 reported that in winter season the three 

major sources of PM2.5 were secondary particles (30%), biomass burning (26%) and transport 

(25%); while in summers the major source was found to be soil and road dust (28%) 

followed by coal and fly ash (26%) and secondary particles (15%).  The latest study 

conducted by TERI & ARAI (2018) shows that in winters, industries (30%), transport (28%), 

and biomass (15%) are the major contributors to PM2.5 concentrations.  

AAQ Monitoring network in Delhi 

AAQ monitoring in Delhi is conducted under National Air Monitoring Programme (NAMP) 

through various organizations which includes Central Pollution Control Board (CPCB), 

Delhi Pollution Control Committee (DPCC), NEERI, IMD, NDMC and Delhi Cantonment 

Board. Among all the monitoring stations manual air pollution monitoring is carried out at 

10 stations in Delhi namely Sarojini Nagar, Chandni Chowk, Mayapuri Industrial Area, 

Pitampura, Shahadra, Shahzada Bagh, Nizamuddin, Janakpuri, Siri Fort, and at ITO as 

traffic intersection station. Out of 10 manual monitoring stations, three stations are managed 

by NEERI and the remaining seven stations managed by CPCB. While the continuous 

ambient air quality monitoring (CAAQM) stations works at  11 locations which includes 

AnandVihar, Civil Lines, DCE, Dilshad Garden, Dwarka, IGI Airport, ITO, MandirMarg, 

Punjabi Bagh, R.K. Puram, and Shadipur. The air quality monitoring stations managed by 

DPCC includes 6 locations i.e. Civil lines, Punjabi Bagh, Mandir Marg, Anand Vihar ISBT, 

IGI Airport, and R.K. Puram. As per the latest information provided by CPCB, under NAMP 

currently there are 38 continuous air quality monitoring stations in Delhi, out of which 24 

stations are operated by DPCC, 7 stations each operated by IMD and CPCB. 

Additionally, under System of Air Quality and Weather Forecasting and Research (SAFAR) 

of Indian Institute of Tropical Meteorology (IITM), Pune, AAQ monitoring is conducted at 8 

monitoring stations in Delhi on real time basis. In addition to this, the U.S. Embassy and 

Consulates’ monitor airborne fine particulate matter i.e PM2.5 in the compounds of the 

Embassy and Consulates.   
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The ambient air quality monitoring stations operated by different agencies are shown in 

Figure 6.  

 

Figure 6 Ambient air quality monitoring stations in Delhi.  
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GIS mapping of study domain  

ARC-GIS software has been used to divide the study domain into grids of 1x1 km2. Figure 7 

shows the gridded study domain, which is used to generate spatial air quality maps. Grids 

with existing monitoring stations of CPCB and DPCC have also been identified, which will 

be used for further analysis using RIO model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7  Gridded study domain of Delhi. 

The land-use data for Delhi has been digitized for different land-use categories, using google 

earth. The category-wise digitized land-use of Delhi is shown in Figure 8. Evidently, central 

part of Delhi is more residential with some pockets of commercial interests. Outer parts of 

the north-western Delhi are still under the cultivable land category. There are specific 

industrial areas which are located in different parts of the city. The monitoring stations in 

the city are located in different land-use categories and form the basis of interpolation of 

values within different grids.  
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Figure 8 Land-use data for the study domain (2016) 

Data source : Google earth  

Population is unevenly distributed in the city of Delhi. The varying population density in 

the city is shown in Figure 9. Evidently, the central eastern parts of Delhi are most densely 

populated areas. However, outer regions in north-western Delhi show the lowest population 

densities. Population density is a driver for many activities, which lead to generation of 

emissions. Gridded population density will be estimated and the parameter is tested to 

possibly improve the prediction of the interpolated values by the RIO model.   
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Figure 9 District-wise population density in Delhi 

TERI already possesses a database of roads in the NCR and the same has been used for 

gridding and assessing the monitoring locations influenced by vehicles in the city. The roads 

have been identified in 3 categories – arterial, sub-arterial and minor roads (figure 10).  
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Figure 10  Road network in NCR including Delhi (2016) 

Source: Digitized by TERI  

3.5 Activities in the project  

Project initiation  

After the receipt of work order from CPCB, the project was initiated in the project 

management system in TERI. A project team of environmental engineers, scientists, and 

analysts was formed and an internal project initiation meeting was carried out to familiarize 

the team members with the project.  

Data collection 

Manual monitoring stations 24-hourly average ambient air quality data was collected from 

CPCB for the year 2015-2017 and later for the period Jan-Dec 2018, for the pollutants PM10, 

PM2.5 and NO2. Data was also collected for the continuous monitoring stations (1-hourly 

average air quality data) for the same period for pollutants PM10, PM2.5, NO2 and O3, from 

CPCB’s website (http://www.cpcb.gov.in/CAAQM/frmUserAvgReportCriteria.aspx) . It was 

observed that data is missing for several hours for various monitoring stations and a data 

gap report was prepared.  

http://www.cpcb.gov.in/CAAQM/frmUserAvgReportCriteria.aspx
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Data analysis  

Ambient air quality trends have been analyzed for different stations in Delhi for two 

datasets – a) years 2015-2017 and b) 2018 (Jan-Dec) to assess the state of air quality. The data 

was plotted for yearly average concentrations for each category of pollutant for different 

stations in Delhi and was compared with the prescribed standards.   

Data from Manual monitoring stations 

The annual average concentrations of PM10, PM2.5 and NO2 at different locations are plotted 

in Figure 11. 

As shown in Figure 11, yearly average NO2 concentrations are found to be exceeding the 

NAAQS at most of the stations. Among all the monitoring stations in Delhi, ITO, Mayapuri, 

Town Hall and Sarojini Nagar are showing higher annual average NOx levels, having 

concentrations exceeding more than two times the annual average limit probably because of 

the contribution from vehicles.  

Yearly average PM10 concentrations have been exceeding the NAAQS of 60 µg/m3 at all the 

station over the last three years with average concentration ranging from 214-266 µg/m3. As 

in case of PM2.5, the yearly average PM2.5 concentrations have exceeded the NAAQS of 40 

µg/m3 at all the manual monitoring stations with average concentration ranging from 85-97 

µg/m3.   
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Figure 11 Yearly average concentrations of NO2, PM10 and PM2.5 for 10 manual air quality 

monitoring locations across Delhi 

Data from continuous air monitoring stations 

The annual average concentrations of PM10, PM2.5, O3 and NO2 at different continuous 

monitoring stations monitored in Delhi are shown in Figure 12. It is clear that the number of 

stations were drastically increased for the year 2018 compared to previous years. 

It is evident from Figure 12 that NO2 concentrations exceeded the standard at most of the 

continuous monitoring locations with average concentrations ranging from 35-70 µg/m3.  As 

in case of data from manual monitoring stations, the yearly average PM10 concentrations 

exceeded the standard at all stations with average concentrations ranging from 231-300 

µg/m3. In the last four years viz. 2015-2018, the lowest yearly average concentration was 

recorded in 2015 (231 µg/m3) which increased to 300 µg/m3 in 2016. The yearly average 

concentration of PM2.5 show that 2016 had the highest concentration of 182 µg/m3 while the 

concentrations were comparatively lower in 2015, 2017 and 2018 with yearly average 
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concentrations of 125 and 129 and 117 µg/m3 respectively.  However, the concentrations 

were still significantly higher than the standard value of 40 µg/m3. The yearly average ozone 

concentrations at different stations ranged from 37 -57 µg/m3.  
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Figure 12  Yearly average concentrations (2015-2018) of PM10, PM2.5, NO2, and O3 for 37 

continuous air quality monitoring locations across Delhi. 

It is evident from Figure 12 that some data is missing for some of the continuous monitoring 

stations for different years (Annexure-I). 

Ozone data has been specifically investigated for hourly values and has been presented in 

Figure 13. As an example, the values at Dwarka station were analysed, which show stark 

seasonal variation. The ozone concentrations are more in summers and autumn and less 
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during winters and rainy season. This is primary due to changes in patterns of solar 

radiations. Ozone is formed due to reactions of NOx and VOCs in presence of sunlight, and 

hence follows a seasonal pattern.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13  Hourly variation of ozone concentrations in 2017 at Dwarka monitoring station in 

Delhi 

Seasonal variation  

The data for different months in the years 2015-17 have been averaged to assess seasonal 

variation of pollutant concentrations. Figure 14 shows the three years averaged monthly 

concentrations for different manual CPCB stations for SO2, NOx, PM10 and PM2.5.  Clearly, 

SO2 concentrations are well within the limits. Mayapuri, Saronijini Nagar and Town hall 

show the highest NOx concentrations throughout the year. The values are highest during 

winters due to lower wind speeds and lower planetary boundary layer height. This reduces 

the dispersive capacity of the atmosphere. Rainy season shows the downwash effect and 

pollutant concentrations are reduced to the lowest levels in the year.  PM concentrations also 

follow the same seasonal trends, however, the values are found to be highest in November, 

mainly due to additional emission contributions from agricultural burning in the 

neighbouring states.   
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Figure 14 Seasonal variation of SO2, NO2, PM10 and PM2.5 concentrations in different manual 

monitoring stations in Delhi (averaged for 2015-2017) 

Ratio of concentrations of different pollutants 

SO2/NO2 

The ratio of SO2 to NOx concentration has been analysed for various stations and months of 

the year.  The ratio of SO2 concentration to NO2 concentration is almost constant through the 

years with the concentration of NO2 remaining higher at all the locations suggesting 

significant contribution from vehicular sector (Figure 15). Shahdara, Mayapuri and 

Janakpuri stations showing the higher ratios, suggesting influence from industrial 

emissions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Monthly average SO2 to NO2 ratio at different locations in Delhi (Averaged for 

2015-2017) 
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NO2/PM10 

NOx is primarily released by high temperature combustion in sources like vehicles and DG 

sets.  Higher ratio of NO2 to PM suggests the influence of these sectors. The ratio of NO2 

concentration to PM10 concentration is highest at Sarojini Nagar, ITO, Town Hall and 

Mayapuri (Figure 16) suggesting the influence of vehicular activity. The ratio shows highest 

values during the monsoon period suggesting the downwash effect of PM, which leads to 

drastic settling of the particles. 

 

 

 

 

 

 

 

 

 

 

Figure 16 Monthly average NO2 to PM10 ratio at different locations in Delhi (Averaged for 

2015-2017) 

 

NO2/PM2.5 

The ratio of NO2 concentration to PM2.5 concentration is highest at Shahzada Bagh, Mayapuri 

and Pitampura. The values are highest during monsoon and post monsoon period (Figure 

17) suggesting lowering of PM2.5 concentrations due to rain downwash effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Monthly average NO2 to PM2.5 ratio at different locations in Delhi  (Averaged for 

2015-2017) 
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PM2.5/PM10 

Combustion based sources show higher PM2.5 fraction in PM10 emissions. On the other hand, 

dusty/crustal sources like road dust, construction, soil dust, flyash ponds, coal handling 

units etc show lower PM2.5 to PM10 ratios. Higher ratio of PM2.5 to PM10 shows the influence 

of combustion sources like transport, biomass burning, industries etc. The ratio of PM2.5 

concentration to PM10 concentration in Delhi is found to be higher during the winters 

compared to other seasons. This is due to increased influence of combustion based sources 

due to lesser dispersive atmospheric conditions in winters and lower wind speeds causing 

less re-suspension of dust.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18  Monthly average PM2.5 to PM10 ratio at different locations in Delhi (Averaged 

for 2015-2017) 

Correlation of pollutants among the manual monitoring stations 

A correlation analysis has been carried out for different monitoring stations for various 

pollutants and is discussed in subsequent sections.  

SO2 

In comparison to other pollutants, SO2 is found to be somewhat less correlated among the 

monitoring stations, except for stations like Janak puri-Shahdara, Pitampura-Janak puri, 

Sirifort-Jankapuri which showed decent correlations. This suggests that the sources of SO2 

are not equally spread-out across the city and there are certain locations which show 

relatively higher SO2 concentrations than other.  

  

0.00

0.20

0.40

0.60

0.80

1.00

Jan feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pitampura Sirifort Janakpuri Nizamuddin
Shahzada Bagh Shahdara ITO Sarojini Nagar



Evaluation of modeling techniques for air quality management in Delhi 

  33

Table 1 Correlation analysis for SO2 
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Sirifort 0.72         

Janakpuri 0.79 0.74        

Nizamuddin 0.48 0.48 0.70       

Shahzada 

Bagh 

0.26 0.55 0.49 0.40      

Shahdara 0.69 0.47 0.78 0.30 0.42     

ITO -0.11 0.06 0.03 0.07 0.63 -0.12    

Town Hall 0.42 0.07 0.63 0.40 0.12 0.50 0.26   

Mayapuri 0.19 0.01 0.47 0.52 0.12 0.10 0.38 0.85  

Sarojini 

Nagar 

0.31 0.20 0.56 0.42 0.31 0.21 0.48 0.80 0.92 

 

NO2 

NO2 concentrations in Delhi seem to be highly correlated across different monitoring 

stations. The correlation values vary between 0.78-0.96. The high correlation values suggest 

that the sources of NOx are widespread across the city. This can be attributable to vehicular 

emissions, which are widespread all across the city.   

Table 2 Correlation analysis for NO2 
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Sirifort 0.90         

Janakpuri 0.95 0.88        

Nizamuddin 0.97 0.86 0.95       

Shahzada 

Bagh 

0.83 0.85 0.79 0.81      

Shahdara 0.85 0.91 0.79 0.77 0.81     

ITO 0.82 0.89 0.84 0.84 0.92 0.80    

Town Hall 0.91 0.92 0.89 0.87 0.88 0.88 0.87   

Mayapuri 0.78 0.91 0.86 0.81 0.80 0.83 0.93 0.87  

Sarojini 

Nagar 

0.84 0.97 0.86 0.80 0.87 0.89 0.91 0.95 0.93 
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PM10 

PM10 also shows high correlation among most of the monitoring stations. The values ranged 

between 0.74-0.96. This again suggests the influence of similar sources to PM10 

concentrations across the stations. This also indirectly points out to significant influence of 

background contributions from outside of the city, which remain almost consistent for 

different stations in Delhi.   

Table 3 Correlation analysis for PM10 
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Sirifort 0.74                 

Janakpuri 0.84 0.93               

Nizamuddin 0.95 0.81 0.91             

Shahzada Bagh 0.94 0.81 0.90 0.96           

Shahdara 0.86 0.85 0.83 0.82 0.88         

ITO 0.94 0.87 0.95 0.94 0.94 0.93       

Town Hall 0.82 0.78 0.81 0.74 0.79 0.93 0.91     

Mayapuri 0.89 0.74 0.84 0.87 0.86 0.86 0.94 0.85   

Sarojini Nagar 0.83 0.87 0.91 0.82 0.84 0.91 0.95 0.95 0.86 

 

PM2.5 

The concentration of PM2.5 also suggests higher correlation having significant value reaching 

up to 0.95. This suggests the influence of similar sources to PM2.5 concentrations across the 

stations. Other than vehicular contributions which are widespread across the city, this also 

indirectly points out to significant influence of background contributions from outside of the 

city, which remain almost consistent for different stations in Delhi.  

Table 4 Correlation analysis for PM2.5 
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Sirifort 0.96     

Janakpuri 0.91 0.91    

Nizamuddin 0.86 0.86 0.89   

Shahzada Bagh 0.86 0.91 0.90 0.80  

Shahdara 0.90 0.86 0.87 0.79 0.77 

ITO      

Town Hall      

Mayapuri           

Sarojini Nagar           
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4. Spatial mapping model for Delhi  

The model was setup for two distinct air quality datasets – 2015-2017 and 2018. The primary 

reason for using two datasets is because of inclusion of several new monitoring stations in 

the city of Delhi in the year 2018, which could lead to more reliable model setups. Section 4.1 

shows the spatial model result based on air quality data set for limited number of stations 

during 2015-2017. On the other hand, section 4.2 shows the results of the spatial model based 

on the air quality datasets for many more monitoring stations although for the small period 

of January-2018 to December 2018.  

Before running the spatial model for generation of maps of air quality, the data was filtered 

on account of QA/QC procedures. Annexure- II shows the procedure used for data filtering.  

The data has been cleaned up for both the time periods 2015-2017 and 2018 (shown in 

Annexure II) and the summary of the stations used in RIO 2018 is shown in table below 

Table 5  Summary of stations used in RIO 2018 

 

 

 

 

 

 

4.1 Spatial model results based on air quality data 2015 to 2017  

After the clean-up of the data, the monitoring station long term averages were calculated for 

the whole period 2015-2017.  To start with, a correlation analysis has been performed to 

understand the relationships between several variable with the air quality values observed 

at different monitoring stations. From the given latitude and longitude values, we have 

calculated UTM coordinates (X,Y) (projection system given in Annexure). Information about 

altitude of these stations was obtained from the GTOPO30 global terrain dataset 

(https://lta.cr.usgs.gov/GTOPO30). The station types were broadly defined in the following 

categories:  

     Rural Area 

     Residential Area 

     Airport location 

     Traffic 

     Industrial 

The station codes were defined as short tags based upon the full station names, see annex.  

Table 6 shows the station codes, UTM coordinates, altitude, and average concentrations of 

PM10, PM2.5, NO2, and O3. 

  

Pollutant 
No. of stations having 

Limited data Insufficient data quality Used 

PM10 5 Nil 27 

PM2.5 4 1 30  

O3 4 3 28  

NO2 4 6 26 

https://lta.cr.usgs.gov/GTOPO30
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Table 6  Details of monitoring stations and their ambient air pollutant concentrations 

(annually averaged) 

ID 
Station 

name 

STATCOD

E 
X [m] Y [m] 

AL

T 

[m] 

TYP

E 
PM10 PM2.5 NO2 O3 

1 Mandir 

Marg 

MANDIR 128578.78 3173551.81 229 1 199.1 104.4 55.1  

2 Siri Fort SIRIFO 129327.94 3163953.64 217 2  130.6 79.9  

3 Delhi Tech. 

University 

DTU111 120750.28 3186519.4 212 1  157.4 73.0  

4 RK Puram R1K1PU 126903.02 3165470.02 219 2 234.9 127.0 69.0 48.2 

5 IGI airport IGI1AI 117188.33 3164903.92 224 3  82.0 55.6 86.3 

6 Dwarka DWARKA 112221.98 3171114.36 210 2  120.6 33.6 30.7 

7 Lodhi road LODHI1 130425.17 3168362.2 208 2   59.7  

8 ITO ITO111 132430.16 3172599.06 206 4 220.7 138.1 60.7 36.8 

9 Anand 

Vihar 

ANAND1 139780.13 3174388.02 199 5 279.1 152.7 84.2 28.3 

10 Civil Lines CIVIL1 130996.72 3177974.83 209 1    79.4 

11 East Arjun 

Nagar 

EAST1A 137798.32 3175421.71 198 5   33.6 41.1 

12 Shadipur SHADIP 124002.84 3175775.01 216 4  141.0 52.8 31.9 

13 IHBAS 

hospital 

IHBAS1 138889.19 3178409.42 201 2  110.7 51.7  

 

As the RIO geospatial mapping model is based on the correlation of the long term 

concentration values with a number of well-chosen proxy parameters, the correlation 

analysis was carried out to understand these relationships.  

4.1.1 Spatial correlation analysis 2015-2017 

When enough station data is available which can be considered representative for different 

land cover/land use categories, the preferred way to deploy the RIO model is making use of 

a land cover dataset as described in (Janssen et al., 2008). However, in this case the number 

of stations is limited with valid data and from these limited number of stations, especially 

for PM10 (4 stations), it is not expected to fit the same number of degrees of freedom as in the 

setup elaborated in (Janssen et al., 2008). The model takes a minimum of five station data to 

interpolate the spatial map. If in case we use four stations, the areas far off from the stations 

will be plotted with the available data set and this reduces the degree of accuracy/freedom 

in plotting the maps. 
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In this correlation analysis we have considered:  

 

a) The Global Human Settlement Layer (GHS - http://ghsl.jrc.ec.europa.eu/), which is a 

population dataset for 2015, disaggregated to 250 m resolution using satellite 

imagery (Figure 19). The natural logarithm (LN(1+P)) of the mean population was 

used in the buffer area to bring the variation in population density more into 

accordance with the variation in local air quality. This had been shown to improve 

the correlation in many other regions  

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 19  Visualization of the GHS dataset for Delhi - 2015 gridded at 250m. 

 

b) The road network in 3 different categories: major roads, minor roads and sub arterial 

roads, which has been digitized by TERI. The road lengths were aggregated for the 

different road categories in the different buffer sizes (see further). In the different 

buffers, the normalized total road lengths w.r.t. the buffer area have been used to 

make to values independent of the buffer area.  

c) The LULC dataset (Google earth) has been used which contains the different land 

use land cover types as depicted below in Figure 20 .  

 

http://ghsl.jrc.ec.europa.eu/
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Figure 20  Land cover dataset used for the analysis. 

Source : Google Earth 

 

Also, here for each station we have created different buffer sizes (500 m, 1km, 1.5 

km, 2 and 3km) to calculate the total fraction of the different land cover classes 

covering the buffer around the stations. Note that for each LULC class, the fraction 

within the buffer area has been used.  

d) Finally, we also investigated the correlation with altitude using the GTOPO30 

dataset to derive the station altitude values.  

As mentioned above here, we have calculated the proxy parameters in different station 

buffers (circular of 500 – 1000 – 1500 - 2000 and 3000 m radius) to assess the dependency on 

spatial scale of the observed spatial variation in concentration. The key features of the 

correlation analysis and the conclusions for the deployment of the RIO model are presented 

below. The correlation analysis also reveals the most appropriate variable for carrying out 

spatial modelling for different pollutants.  

PM10 

In case of PM10, the correlation analysis is somewhat difficult given the limited number of 

stations (4). The observations are listed below: 

 There seems to be consistently over the different buffer radii tested a negative 

correlation with altitude (r = -0.8) and a positive correlation with the population 

density which is the strongest (r=0.9) at small buffer size (500m - 1 km). We find 

also a high correlation with Industrial land cover (however, this appears to be 
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caused by only a single station (and is therefore not really full-proof to be used in 

this analysis). 

 The 2015-2017 data seem to exhibit a negative correlation with the major and sub 

arterial road proxies and a slightly positive correlation with the minor roads 

(which may be more the case given the correlation with residential fraction for 

the minor roads). In any case, the negative correlation with the major & sub 

arterial roads seems a bit odd but given the limited amount of stations, we 

should not over interpret these findings. Nevertheless, we did expect a stronger 

correlation given the contribution of road dust emissions in the coarse PM 

fraction.  

 In summary, considering the high correlations with PM10 data, it seems 

reasonable to setup a PM10 mapping model only using the GHS_2015_MEAN 

data proxy, for which the 500 m – 1 km buffers seem to correlate best (Figure 21 ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21  Coefficient of correlation (and its variation with the buffer radii) with 

GHS_2015_MEAN population data and altitude with PM10 values at different stations.  

PM2.5 

In case of PM2.5, the correlation analysis is somewhat better given more number of stations 

reporting valid data for PM2.5. The observations are listed below: 

 Residential land cover class shows quite a strong correlation across the different 

buffer radii, but the GHS population dataset does not correlate so strongly with PM2.5 

concentrations across different stations (Figure 22).  

 Like PM10, significant negative correlation of PM2.5 concentrations with altitude 

seems to be present. 

 Next to residential area, the industrial and “Green Area” area fractions are also 

consistently correlated across the scales, though for Green Area, we see the (negative) 

correlation diminishing with increasing spatial scale (Figure 23).  
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Figure 22  Coefficient of correlation of PM2.5 concentrations with different landuse categories 

at different stations (averaged for different buffer sizes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23  Coefficient of correlation (and its variation with the buffer radii) with 

GHS_2015_MEAN population,  altitude, and landuse categories with PM2.5 values at 

different stations.  

Ozone  

In case of ozone, the correlation analysis is somewhat better given more number of stations 

reporting valid data for ozone. The observations are listed below: 

 Consistent correlation with altitude seems to be present (positive, i.e. higher O3 with 

increasing altitude due to stratospheric influx) (Figure 24).  

 Stable correlation across the scales for population density and / or residential surface 

fraction, which seems to exhibit strongest correlation at spatial scales of about ~2 km 

buffer radius (Figure 25). These correlations are negative clearly depicting the 

titration chemistry of ozone with NO emissions released in the residential and other 

dense areas.  
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 Sub arterial road fraction seems to be consistently negatively correlated which again 

makes sense due to titration effect, however the positive correlation of the total major 

road length seems to be odd, although this only occurs at small spatial scale (500), at 

larger scale, there is hardly any correlation, see below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24  Coefficient of correlation of ozone concentrations with different landuse   

categories at different stations (averaged for different buffer sizes) 

 

Figure 25  Coefficient of correlation (and its variation with the buffer radii) with 

GHS_2015_MEAN population, altitude, and landuse categories with ozone values at 

different stations.  
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NO2 

In case of NO2 (Figure 26 and 27), the correlation analysis is in general found to be  

unsatisfactory, even for population density, residential area fraction, road length etc. The 

correlation with the most relevant proxy parameters is found to be negative across the 

different spatial scales. Some further detailed analysis is needed before being able to proceed 

to construct an NO2 mapping model. This could include traffic count information (annual 

averaged daily traffic counts) or including a dispersion model, or an emission dispersion 

based proxy parameters.  

Figure 26  Coefficient of correlation of NO2 concentrations with different landuse categories 

at different stations (averaged for different buffer sizes) 

Figure 27  Coefficient of correlation (and its variation with the buffer radii) with 

GHS_2015_MEAN population,  roads, and landuse categories with NO2 values at different 

stations.  

The correlation analysis suggests that there are variable which are found to be significantly 

correlated with the concentrations of PM10, PM2.5 and O3. However NO2 requires some 

further study as none of the variables were found to be suitably correlated with the 
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concentrations. In this phase, we then developed spatial models for PM10, PM2.5 and O3 

concentrations only.  

The simple first step is to take the population density map as a spatial driver for all, as this 

seems to yield reasonable correlations and is intuitively related to sources leading to air 

pollution. We therefore go ahead with the RIO – optimization technique and constructed a 

reduced set of land use categories based upon the LULC dataset. Limited number of stations 

is a real constraint in this exercise for the years 2015-2017.  

4.1.2 Construction of RIO spatial mapping model (based on 2015-2017 

dataset) 

RIO model is constructed for the city of Delhi to produce pollutant concentration estimates 

on a 1x1 km2 grid over the city. The basics of the RIO model are described in detail in 

Hooyberghs et al. (2006), and Janssen et al (2008). The first step is to develop a grid of 1x1 

km resolution grid across the city of Delhi and overlay the landuse map on it. Locations of 

all the monitoring stations are marked on the study domain and a buffer zone dimensioned 

by a fixed radius is created around each of the monitoring station. Within the buffer zone, 

area under different landuse classes is identified and quantified. The next step is to establish 

β parameter, which is a single value indicator correlating the local land use characteristics 

with the air pollution levels originated due to local activities.  

Establishing land use β parameter 

In order to establish land use β parameter, we identified % area under different land use 

categories within buffer region around all monitoring stations in study domain. The defined 

single value indicator is based on correlation of local land use characteristics to local air 

pollution levels in which land cover distribution in the vicinity of all monitoring stations is 

transformed into single land use parameter β according to formula: 

 

 
 

Where,  

nRCLi is the area of landuse class i inside the buffer and ai is a pollution-related coefficient 

for the landuse class i. The β -parameter is the logarithm of a weighted and normalised sum 

of the landuse class distribution. The pollution-related coefficients ai are used to weigh the 

importance of a particular landuse class on the air pollutant concentrations. The β indicator 

can then be optimized for each pollutant by choosing a best set of ai coefficients, i.e which 

gives the best results. The different landuse classes used in this analysis are shown below in 

Table 7.  
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Table 7  RIO classes (based on land cover) 

S.No. Landuse class 

1 a1 = Residential, Drain 

2 a2 = Industrial, Commercial 

3 a3 = Green Area 

4 a4 = Cultivated 

5 a5 = Open Space, Others 

6 a6 = River, Water body, Canal, Lake, Island 

For initial estimates of β, initial pollutant coefficient ai is derived from source emission 

estimates for Delhi (Table 8). Emissions are used as the initial estimates for ai, as they 

provide the initial guess for the local characteristics of air quality.  Sectoral emissions for 

Delhi NCT have been used from Guttikunda and Calori (2013). The estimate of ai values is 

shown below in Table 8. 

Table 8  Initial estimates of ai derived from available sectoral emission inventory estimates  

a Landuse 

Sectors for 

initial weights 

using emissions 

Emission 

share (PM 

2.5) 

Scaled based on area of 

each landuse   

a1 Residential area S1+S2+S6+S8 0.4 1 

a2 Industrial + 

Commercial 

S3+S5+S9 0.36 0.9 

a3 Urban Green - - - 

a4 Cultivated land S7+S4 0.23 0.575 

a5 Open space -  0 

a6 Water bodies -  0 

 

Where, 

 

Thereafter, β -parameter is estimated for all the stations using the initial conditions for ai 

based on emission estimates, and area of different landuse categories in the buffer. The 

correlation between β values and pollutant concentration at different stations is observed 

and further optimized by validating the values using hit and trial method. Once optimized, 

the final set of ai and β values for each station are estimated. 

Sector Label 

S1 Transport 

S2 Domestic 

S3 Diesel Gen 

S4 Brik Kilns 

S5 Industries 

S6 Construction 

S7 Waste Burning 

S8 Road Dust 

S9 Power Plant 
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Optimization of land use β indicator  

Once the stations are characterised by a β value, the ai values need to be optimised in order 

to improve the correlation between β and pollutant concentrations. Therefore, the long-term 

annual average of the pollutant value in each monitoring station is plotted against the 

corresponding estimated β value of the station. This plot represents ‘‘trend’’ function: it is 

the correlation between the mean pollutant value and the land use β -parameter for the near 

vicinity. The high correlation between average pollutant concentration and β –parameter can 

be understood as optimal parameterization of local land character of spatial distribution of 

air pollutant. The optimization is achieved by improving the coefficient of determination (r2) 

and reducing the root mean square error (RMSE) of the fit and choosing the final set of ai 

values. Thus, the optimization produces a statistically valid trend function between mean 

pollutant value and the land use β –parameter. The optimised ai values are presented in 

Table 9.  

Table 9  Optimized ai values for different landuse categories  

a 
 

Values before 

optimization   

Values after 

optimization 

  PM2.5 PM2.5 

1 Residential area 1 1.000 

2 Industrial + Commercial 0.9 1.217 

3 Urban Green 0.0 0.000 

4 Cultivated land 0.575 0.575 

5 Open space 0 0.161 

6 Water bodies 0 0 

 

The optimisation of β parameter has been done separately for different pollutants namely 

PM2.5, PM10 and Ozone.  

Optimization of β parameter with PM2.5  

The optimization model runs to derive ai values for PM2.5 are also depicted in Figure 28. 

Figure 27 shows the correlation between PM2.5 concentration and β parameter by making 

adjustments in pollutant related coefficient ai during optimization. It was observed that the 

fit shows r2 value of 0.62, and RMSE of 13.28. It was observed for high β values the 

concentration was also high at residential and traffic locations, depicting the role of local 

activities on deterioration of air quality.   
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Figure 28 Optimisation model runs to derive ai values for PM2.5 

Optimization of β parameter with PM10 

The ai values have been assumed to be same for PM10 considering similarity of sources with 

PM2.5 and limited number of PM10 stations (4). The trend fit of PM10 with β parameter yields 

a satisfactory correlation and trend function, as can be seen below in Figure 29.  
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Figure 29  Optimisation model runs to derive ai values for PM10 

In case of PM10, the optimization for establishing trend was performed using data for four 

available monitoring stations. The optimization yielded a linear plot showing high 

concentration at kerbisde , residential and airport bound stations corresponded with  high β 

parameter with r2 value of 0.82 and RMSE value of 12.30. From the trend analysis, highest 

average concentration reaching above 250 µg/m3 was also observed at the station ANAND1, 

a traffic bound location indicating suspension of road dust along with vehicular emission 

exhaust could be major local contributor near this station.  

Optimization of β parameter with O3 

In case of O3, for optimization an interesting trendline was constructed, which yielded very 

high correlation, when allowing the weight for open space to vary as well. The set was 

obtained by first varying a2, a3 and a5 and keeping a4 fixed at 0.5, after which we optimized 

a4 with the rest fixed.  The optimization produces plot showing cross relationship between 

ozone concentration and land use β parameter indicating low ozone concentration for high β 

values. The plot shows high ozone concentration at rural area and airport region having low 
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β values whereas low ozone concentration was observed at traffic bound, industrial and 

residential areas for high β values. This is mainly due to “NO-titration effect”, which leads 

to depletion of ozone at the areas of high NO emissions (Sharma et al., 2016). NO being 

primarily released from vehicles, DG set (high temperature combustion activities) etc, is 

found to be more in the center of city and less on the periphery. Therefore, ozone is found to 

be higher in the periphery and less in the center of the city. Accordingly, it follows an 

inverse relationship with the β parameter (Figure 30).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30  Optimisation model runs to derive ai values for ozone 

4.1.3 RIO spatial mapping model validation 2017 

The performance of the RIO interpolation model is evaluated  using  the “leaving-one-out” 

approach. In this approach, for each station concentrations are predicted making use of all 

other available monitoring data at that time step, except the concentrations of that particular 

station. For validation of model, different performance metrics such as – coefficient of 

correlation (r2), root mean square error (RMSE), the bias and the mean absolute error (MAE) 

have been used. Also, to evaluate the overall performance of RIO model and also to make 

comparison with standard interpolation techniques, these metrics (RMSE, bias and MAE) 

have been used. These metrics have been computed for model performance for different 

pollutants namely, PM2.5, PM10, and ozone.  

Model performance and validation: spatial scale  

Validation of the model results for different pollutants is carried out by considering leaving 

one out approach. Such approach was carried out for all the stations in which model results 
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(after leaving out a particular station for estimation of β trends) were compared with the 

observed concentration value. It was observed from Figure 31 that modelled values for most 

stations are close to their observation in the year 2017; however, there are some stations 

which showed over and under estimation of predicted modelled values.  Overall, the bias 

for PM2.5 is -5.3 and RMSE of 26.9.  In case of PM10 (Figure 31), there were only 4 stations for 

which analysis could be carried out which show a bias of 24 and RMSE of 72. It was 

observed from PM10 plot that optimized modeled results were close to their observation 

except one station showing over estimated value. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31  Comparison of modelled (using RIO) and actual PM2.5 and PM10 concentrations 

for 2017 

In case of O3, the analysis shows that the optimized modelled value for all stations were 

highly close to their observation having r2 value of 0.78, a very small bias of -0.69, and RMSE 

of 4.51. Out of the three pollutants, the model has performed the best for ozone.  
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Figure 32  Comparison of modelled (using RIO) and actual ozone concentrations for 2017 

Model performance and validation: temporal scale  

Using the β values based on annual average pollutant concentration, daily values of 

pollutants at different monitoring stations are predicted. The daily modelled values are 

compared with daily observations at different stations. Temporal validation of the model 

has been carried out by comparing the daily modelled values with the actual observations. 

Figure 33 shows the coefficient of correlation between daily modelled and actual pollutant 

concentration for PM2.5, PM10 and O3. It can be observed that for PM2.5 most of the stations 

showed satisfactory correlation between model and actual values except showing low values 

at IGI airport. In case of PM10 (with less number of available stations), two stations MANDIR 

and R1K1PU showed good correlation between daily modelled and actual pollutant 

concentration, but remaining two stations showed poor correlation due to over estimation of 

predicted modelled values.  

For O3, the model couldn’t produce satisfactory correlation between daily modelled and 

actual pollutant concentration showing good correlation only at R1K1PU and SHADIP but 

less or no correlation at IGIAI, ITO111 and CIVIL1, due to over and under estimation of 

modelled values. 
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Figure 33  Coefficient of correlation between daily modelled and actual pollutant 

concentrations at different stations (2017) 

Generation of spatial maps of air quality using validated RIO model (2017) 

The validated RIO model is used to generate annual averaged maps for the year 2017 for 

different pollutant. The map represents the annual mean concentration PM spatially 

interpolated using the RIO model based on measurements at limited number of monitoring 

stations and the beta parameter.  
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PM10 

Figure 34 represents estimated PM10 spatial map for the year 2017. The small coloured circle 

on the map represents monitoring locations and corresponding actual monitored PM10 value 

at that station.  RIO interpolation technique is applied over entire territory of Delhi 

suggesting that interpolation scheme is able to introduce land use based local variation in 

PM10 concentration at places where no monitoring data is available. Figure 34 shows the 

variation of PM10 concentrations ~150-500 g/m3 across different places in the city. This also 

shows that about 150 g/m3 is the urban background, above which local sources act and add 

to the PM10 pollutant concentrations. 

The map showed highest concentration at eastern and southern part of study domain 

whereas lowest concentration was observed near the vicinity of “green space” area. 

Considering the land cover characteristic of our study domain, highest concentration was 

estimated near industrial and traffic bound central regions. Apart from industrial or traffic 

areas, higher concentration was also estimated over the south-eastern part of the city, 

indicating the flow of pollution in this direction due to atmospheric transport.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34  Spatial plot of modelled annual averaged PM10 concentrations using RIO for the 

year 2017  
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PM2.5 

PM2.5 spatial maps for the year 2017 were also generated for the annual averaged. Figure 35 

shows the variation of PM2.5 concentrations ~60-250 g/m3 across the cities. This also shows 

that about 60 g/m3 is the urban background, above which local sources act and add to the 

pollutant concentrations.  

The small coloured circle on the map represents monitoring locations and corresponding 

modelled PM2.5 value. The map showed highest concentration at some of the northen parts 

of study domain due to presence of industrial areas. Lowest concentration was observed 

near the vicinity of “green spaces and water bodies. Considering the land cover 

characteristic of our study domain, highest concentration was estimated near the vicinity of 

industrial and traffic bound regions (in the central and south-eastern part of the city) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35  Spatial plot of modelled annual averaged PM2.5 concentrations using RIO for the 

year 2017  

Although, the RIO model performed reasonably well for preparation of spatial plots, limited 

number of monitoring stations remains as a constraint. In 2018, several new monitoring 

stations have been installed which expand the geographical coverage of monitoring data 

and can help in further improving the RIO model estimates. In this view, we collected data 

of Jan-2018 to December-2018 and again setup the model after including more number of 

stations in the analysis.   
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4.2 Spatial model results based on air quality data 2018 (Jan-Dec) 

Same methodology has been applied for estimation and optimization of beta parameter.  

TERI and ARAI concluded a study in 2018, were a new inventory of emissions for 2016 has 

been developed (Table 10). In the analysis for 2018, we have used the emissions from 

TERI&ARAI (2018) as starting values for ai.  

Table 10  Annual Emission inventory of pollutants (kt/yr) in Delhi and NCR for 2016 

SECTOR 
DELHI 

PM10 PM2.5 NOx SO2 CO NMVOC 

Transport 12.8 12.4 126.9 1.1 501.1 342.1 

Industries 1.3 1.1 1.6 4.6 0.2 0.0 

Power plants 5.3 3.2 11.2 23.6 3.5 0.9 

Flyash ponds 0.6 0.2 0.0 0.0 0.0 0.0 

Residential 2.9 2.0 3.7 0.2 61.1 12.7 

Agricultural burning 0.5 0.4 0.1 0.0 2.7 0.3 

Road dust 24.0 5.8 0.0 0.0 0.0 0.0 

Construction 14.2 2.7         

Dg sets 0.1 0.0 0.7 0.0 0.2 0.1 

Refuse burning 1.4 1.2 0.5 0.1 4.6 2.7 

Crematoria 0.4 0.2 0.1 0.0 2.2 1.2 

Restaurant 1.4 0.8 0.4 1.3 2.5 0.4 

Airport 0.1 0.1 6.6 0.5 13.6 7.0 

Waste incinerators 0.5 0.3 4.1 1.6 0.9 0.0 

Landfill fires 1.8 1.5 0.6 0.1 5.8 2.2 

Solvents           57.3 

Coal handling at 

power plants 

0.1 0.1         

Total 68 32 156 33 598 427 

 

SECTOR 
NCR 

PM10 PM2.5 NOx SO2 CO NMVOC 

Transport 68.6 66.5 528.9 4.4 1750.9 886.5 

Industries 288.3 127.4 85.2 556.2 620.0 27.0 

Power plants 64.4 38.6 132.5 297.1 13.4 9.4 

Flyash ponds 7.7 1.5 0.0 0.0 0.0 0.0 

Residential 204.3 131.5 38.0 16.8 1700.3 374.1 

Agricultural burning 174.1 102.2 30.6 9.0 781.1 209.2 

Road dust 137.2 30.6 0.0 0.0 0.0 0.0 

Construction 43.7 7.8         

Dg sets 3.7 3.2 53.0 3.5 11.4 4.3 

Refuse burning 17.5 14.4 5.5 0.7 56.0 33.3 

Crematoria 1.5 0.8 0.2 0.0 7.7 4.3 

Restaurant 1.7 1.0 0.5 1.6 2.9 0.4 

Airport 0.1 0.1 6.6 0.5 13.6 7.0 
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SECTOR 
NCR 

PM10 PM2.5 NOx SO2 CO NMVOC 

Waste incinerators 0.5 0.3 4.1 1.6 0.9 0.0 

Landfill fires 1.9 1.6 0.6 0.1 6.1 2.3 

Solvents           112.8 

Coal handling at 

power plants 

1.6 1.0         

Total 1017 528 886 892 4964 1671 

Source  TERI and ARAI (2018) 

 

The broad landuse classes used in this analysis remain same as in Table 11.  

 

Table 11  Broad landuse categories used in the model 

S.No. Landuse class 

1 a1 = Residential, Drain 

2 a2 = Industrial, Commercial 

3 a3 = Green Area 

4 a4 = Cultivated 

5 a5 = Open Space, Others 

6 a6 = River, Water body, Canal, Lake, Island 

 

The area under each of the landuse in the city is estimated and presented in Table 12.  

 

Table 12  Area under each of the landuses in Delhi 

Land cover Emission class Area (km²) Percentage 

Canal a6 0.870302 0 

Commercial a2 13.4998 1 

Cultivated Land a4 551.17 37 

Drain a1 6.619793 0 

Green Area a3 84.9826 6 

Industrial Area a2 28.26872 2 

Island a6 1.173269 0 

Lake a6 0.2615 0 

Open Space a5 58.02503 4 

Others a5 40.61282 3 

Residential 

Area 

a1 680.866 46 

River a6 13.1588 1 

Water Body a6 1.887822 0 

 

The area under different clubbed landuse categories as per Table 12 is shown in Table 13. 

Evidently 46% of area is under residential, and 37% is cultivable land.  Only 3% area is 

under industrial/commercial landuse.  
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Table 13  Area under clubbed landuse category in Delhi 

 

 

 

 

 

 

Establishing land use β parameter 

Spatial driver is constructed from land cover information. For initial estimates of β, initial 

pollutant coefficient ai is derived from source emission estimates for Delhi (Table 14). 

Emission estimates are used as the initial estimates for ai, as they provide the initial guess 

for the local characteristics of air quality. The weights for the different land cover classes 

have been initially estimated from the emission inventory for Delhi, by scaling the land 

cover weights of different landuses with the value for residential area set at unity. The 

estimate of initial ai values is shown below in Table 14. 

Table 14  Initial ai values derived using sectoral emission estimates of Delhi city 

a 
 

Sectors for initial 

weights 

Emission total 

PM2.5 
Scaled Scaled with area 

1 Residential area S1+S2+S6+S8 24.1 1 1 

2 Industrial + Commercial S3+S5+S9 7.5 0.31 5.12 

3 Urban Green - -  0  

4 Cultivated land S7+S4 0.4 0.0016 0.021 

5 Open space -   0 

6 Water bodies -   0 

  SUM: 32   

 

Where,  
Sector Label 
S1 Transport 
S2 Domestic 
S3 Diesel Gen 
S4 Brik Kilns 
S5 Industries 
S6 Construction 
S7 Waste Burning 
S8 Road Dust 
S9 Power Plant 

 

Optimization of β parameter 

For the year 2018 (Jan-Dec), various optimization scenarios have been run to setup the  

Emission class Area (km²) Percentage 

a1 687.48582 46 

a2 41.768515 3 

a3 84.982596 6 

a4 551.170024 37 

a5 98.637843 7 

a6 17.35169 1 
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β parameter for various monitoring stations. These scenarios are explained below and the 

land use optimization values are shown in Table 15.  

Table 15  Description of scenarios used for model optimisation purposes 

LC1 LC2 LC3 LC4 LC5 

Residential: 1 Residential: 1 Residential: 1 Same land use 

optimization 

as LC3 with 

manual 

adjustments 

for Anand 

Vihar and 

Pusa stations  

Same land use 

optimization 

as LC3 with 

exclusion of 

Anand Vihar 

and Pusa 

stations 

Industry: 4.6 Industry: 4 Industry: 1.9 

Urban Green: 

0.1 

Urban Green: 

0.05 

Urban Green: 

0.05 

Cultivated 

land: 1.25 

Cultivated 

land: 0.5 

Cultivated 

land: 0.5 

Open Space: 0 Open Space: 

0.15 

Open Space: 

0.15 

Water: 0 Water: 0 Water: 0 

 

LC1: Spatial driver for PM 

First optimization has been carried out, which led to a higher contribution for cultivated 

land and non-zero contribution for urban green. Two ‘odd’ stations Okhla and Najafgarh are 

quite affected by industrial land use contributions, but is not reflected by higher PM 

concentrations. Possibly these industrial locations are not linked to significant local PM 

emissions, or these industrial emissions are stack emissions and do not have large impact at 

ground level. The stations are left out to optimize the land-use weights and are added with 

lower beta in the stations file (beta 0.6). 

Optimization pushes the contribution for industry and cultivated land higher. Given the 

impact of agricultural fires and possible impact of linked land uses such as brick kilns, the 

contribution for cultivated land has been allowed to be slightly higher as the residential 

sector. The trend of PM against beta (based on land cover) is determined with this set of 

stations, including the 2 adjusted stations. 

LC2: Spatial driver for PM 

This was a further variation on LC1, with lower weight for cultivated land, and slight 

adjustments for other land cover classes based on an optimization step. Two ‘odd’ stations 

Okhla and Najafgarh are left out, as done for LC1.  In this scenario, there is slightly lower 

weight for industry, lower weight for cultivated land and a minor contribution for open 

space and urban green. The trend of PM against beta (based on land cover) is determined 

with this set of stations, including the 2 adjusted stations. 

LC3: Spatial driver for PM 

This was a further variation on LC2, where a third optimization is performed with still lower 

contributions from industry, still neglecting stations Okhla_ and Najafgarh. The trend of PM 

against beta (based on land cover) determined with this set of stations, including the 2 

adjusted stations. 

LC4 Spatial driver for PM 

This scenario uses identical land use optimization as in LC3. In addition to this, the two 

outlier stations, Anand Vihar and Pusa have been manually adjusted to beta-values better in 
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line with the observed trend. Adjusting these stations has an impact of the fit of PM 

concentrations against the spatial driver beta. The trend of PM against beta (based on land 

cover) is determined with this set of stations, including the 4 adjusted stations. 

LC5 Spatial driver for PM 

Identical land use optimization as LC3 and 4, but completely neglecting stations Anand 

Vihar and Pusa New Dehli. The trend of PM against beta (based on land cover) is 

determined with this set of stations, excluding Anand and Pusa. 

Figure 36 shows the plot of annual average concentration of PM2.5 of different stations with β 

parameter in the LC1-LC4 scenario.   
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LC1 

LC2 
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Figure 36  Optimization of the weights of the land cover classes to improve the trend of the 

annual average PM2.5 concentrations for the stations in Delhi against their beta-values (LC1-

LC4).  

LC3 

LC4 
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 Calculation of ai parameters applied for RIO 

The intelligent spatial interpolation model RIO has been configured based on land use 

information. To apply land use as spatial driver the data are converted into a single 

parameter beta. As first step, land use classes are lumped into 6 lumped classes and matched 

with the available emission inventory. The sectoral emissions are used as first 

approximation to derive the weight of each lumped land use class, taking into account area 

of Delhi belonging to these land use classes. 

 

The calculation of the beta parameter is calculated for the surroundings of each station and 

for each RIO grid cell using the formula: 

  
With ai the weight per lumped land use class and nRCLi the area covered by that lumped class 

in that RIO grid cell. 

 

As a next step, the weights ai are optimized to have clear trend between the beta-values per 

station and the long term average concentrations at these stations. The configuration of the 

RIO model includes a routine to optimize ai parameters for minimal RMSE. However, only 

after validation on the final concentration outcomes of the RIO model, decisions on the most 

appropriate ai weights are made. 

Several different approaches to optimize these weights ai have been tested and validated 

against the station observations using a leaving-one-out approach to decide on the best set of 

ai values. 

 

As explained above, several sets of lumped land use class weights have been tested and 

validated. The final weights have been chosen based on the outcomes of these validations 

and the export knowledge on the local air quality situation in Delhi. 

 
 

The optimization model runs to derive ai values for PM2.5 for LC1 to LC4 scenarios.  

Different optimization scenarios led to generation of different beta-values for monitoring 

stations and other grids in the study domain. The differences in beta-values can be observed 

in Figure 37 for the LC1 and LC2 scenarios. The LC2 scenarios clearly show lower beta-

values for outer Delhi region suggesting lower local emissions in these regions.  
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Figure 37  Beta parameter values for the LC1 and LC2 scenarios 

The scenario analysis reveals that LC4 is the best optimisation scenario, which is able to 

predict the PM2.5 concentrations most effectively. It can be seen from Figure 36 that LC4 

scenario shows highest correlation compared to other scenarios with a RMSE of 11.15. 

Therefore we have taken LC4 scenario for validation purpose. It was observed that for high 

β values the concentration was also high at residential and traffic locations, showing the 

local activities leading to local impacts on air quality.   

4.2.1 Validation of spatial model for 2018 (Jan-Dec) 

Validation of any model is an essential step before using the model for any further 

processes. Spatial and temporal validations were carried out for the modelled results under 

different scenarios.   

Spatial validation  

Spatial validation of the RIO model results has been carried out for PM2.5 for the entire year 

2018 by considering leaving one out approach. The exercise was carried out using the best 

performing LC4 scenario.  Such approach was carried out for all the stations in which model 

results (after leaving out 1 particular station for estimation of β trends) were compared with 

the observed concentration value. Figure 38 shows the correlation plot between modelled 

and observed concentrations for different monitoring stations in the city. It is observed that 

modelled values for most stations were close to their observation however, some stations 

LC1 LC2 
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showed over estimation of predicted modelled values. The coefficient of correlation (R2) was 

found to be 0.45. Overall, the RMSE value was 11.78 while bias remaining at -0.54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38  Comparison of modelled and observed PM2.5 concentrations at different stations 

in Delhi under LC4 scenario (2018) 

Temporal validation  

The model developed using β values and annual average pollutant concentration is used to 

predict daily pollutant concentration under LC4 scenario. The daily modelled PM2.5 values 

are compared with observations at different stations. For comparative evaluation, three 

performance metrics were chosen-coefficient of correlation, bias and RMSE.  

Figure 39 shows the three plots under LC4 scenario showing the coefficient of correlation, 

bias and RMSE values between daily modelled and actual pollutant concentration for 

different stations. It was observed that most stations out of 29 locations show good 

correlation with daily observed concentration having R2>0.6. Only 1 station (Aya Nagar) has 

shown correlation value of less than 0.5. This confirms satisfactory performance of the model 

for predicting daily variations of concentrations at most of the stations. Most stations also 

showed less bias for estimated modelled values when compared to daily observed value. 

The bias remained less than ±20 µg/m3 for most stations. In the LC4 scenario, only 2 stations- 

LODHI and PUNJAB showed bias more than  ±20 µg/m3. The results from RSME also 

showed low values for most of the locations. Only 7 out of 29 stations were observed to have 

higher RMSE values ranging between of 40-60 µg/m3. Only two stations, Aya Nagar and 

IHBAS showed RMSE values higher than 50 µg/m3. Overall, this can be concluded that for 

most of the stations the RIO spatial model is performing satisfactorily for entire year 2018 

(Jan-Dec) and hence can be used for prediction of values at other locations in the city and 

generation of satisfactory spatial air quality map.  
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Figure 39  Plots under LC4 scenario showing the coefficient of correlation, bias and RMSE 

values between daily modelled and actual pollutant concentration for different stations in 

2018 

Figure 40 shows the plots of ratios of a) bias to standard deviation, and b) RMSE to standard 

deviation. It is evident that the model has very low bias and high precision. Most values 

show low RMSE/σ values also for most of the stations.  Only 2 stations out of 29 are beyond 

the satisfactory ranges (as depicted by green circles) of these two ratios.  
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Figure 40  Ratios of a) bias to std. deviation and b) RMSE to std. deviation between the 

modelled and predicted values of PM2.5 at different stations in 2018. 

  

Each dot represents one station, the value on x-axis is the ratio of the centered root mean 

square error CRMSE over the standard deviation of the observations and the y-axis the ratio 

of the bias over the standard deviation of the observations (introduction of the target plot for 

model performance evaluation in Pederzoli et al. 2012, IJEP 50, 175-189, Performance criteria 

for the benchmarking of air quality model regulatory applications: The 'target' approach). 

4.2.2 Generation of spatial plots PM2.5 

Once the model is validated, this can be reliably used for prediction of pollutant 

concentrations at the locations, where there is no monitoring stations available. The 

predicted values can then be used to generate spatial air quality maps for various pollutants 

on daily, monthly or annual basis.  

Figure 41 presents the spatial PM2.5 map for year 2018 based on the most suitable LC4 

scenario, for the study domain i.e. Delhi. The small coloured circles on the map represent 

monitoring locations. This can be observed that the colour in the circle generally 

corresponds to the PM2.5 values estimated by the RIO model value. The maps also suggest 

that RIO interpolation technique is also able to introduce land use based local variation in 

estimated PM2.5 concentration at places where no monitoring data is available.  
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LC4 scenario is a scenario with readjustment for the two locations namely, Anand Vihar and 

Pusa road. The explanation for this readjustment specifically for these 2 locations is as 

follows. RIO is an intelligent interpolation model which uses spatial information to adjust 

(detrend) the observations of pollutant concentrations prior to interpolation. After the 

interpolation, the trend is reapplied to create the resulting concentration maps. During this 

procedure, it is assumed that the observations monitored at a specific station are 

representative for its surroundings. Some stations can however be heavily influenced by 

local sources and are not representative for the concentrations in the surroundings. An 

example is a kerbside station like Anand Vihar, which is significantly influenced by local 

traffic emissions. An essential step during the RIO configuration is the determination of the 

relation between the spatial driver and average concentrations observed at the stations. If a 

station is not representative for its surroundings, the model results can be improved by 

either adjusting the spatial driver for a specific station or neglecting the station. During the 

RIO configuration for Delhi, stations which are characterized by industrial land use in their 

surroundings but do not show increased PM concentration levels have been manually 

adjusted to rather reflect urban background stations. For a hotspot location like Anand 

Vihar, we can consider this an outlier and leave the station out or adjust its spatial driver 

information as well. For an outlier with low concentrations, it can be considered that the 

level of detail of the spatial information is insufficient to explain the difference between such 

a location and other urban background locations in Delhi. As all stations in Delhi are mainly 

characterized by a domination of residential land use, a station like Pusa New Delhi is more 

representative for locations with less urban influence. Therefore, the land use parameter for 

this station could be manually adjusted to lower values. Ideally, more detailed information 

is available in the future which can explain for the difference within urban background 

stations and avoiding the need of manual adjustments. 

The maps also suggest that RIO interpolation technique is also able to introduce land use 

based local variation in estimated PM2.5 concentration at places where no monitoring data is 

available. It could be observed from Figure 41 that the highest concentration (120-135 µg/m3) 

was estimated at some north-western and south-eastern, central part of study domain 

indicating hot spots mostly characterized by urban and industrial land cover. High 

contribution with concentration value of 105-120 µg/m3 was also estimated at some 

northern, eastern and south-eastern region of the map mostly covered by urban/residential 

area or traffic location. Model still estimated high contribution (90-105 µg/m3) at western 

part of study domain indicating the impact of background concentrations i.e. the influence 

of emissions generated outside (upwind) regions in Delhi’s PM2.5 concentrations. As 

expected, the lowest concentrations (75-90 µg/m3) were estimated at green cover and open 

space area. This scenario provided the closest estimates to the actually observed PM2.5 

concentrations at most monitoring stations in Delhi.  
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Figure 41  Annual average PM2.5 map for 2018 using RIO with land cover information as 

spatial driver (LC4) on daily average basis. 

4.2.3 Optimization analysis of PM2.5 with Population Density  

An attempt has also been made to assess the model optimization with population density as 

a parameter instead of landuse categorization. Figure 42 represents population density map 

of our study domain utilizing population density data from GHS 2015. In the map, densely 

populated regions were observed at central, eastern and some south-eastern part of the 

study domain due to impact of urban/residential land cover pattern. The region with less 

population density was estimated at green space (1500-1750) and rural/cultivated area 

(<100).  
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Figure 42  Population density map of Delhi (2015) 

Data source: GHS 2015 

The figure 43 represents correlation between PM2.5 concentrations and log(1+pop) for all 

stations within our study domain. Average population density was estimated within a 1km 

buffer around the stations. No significant correlation has been observed between the two 

parameters, and hence population density has not been considered as the parameter for 

deriving beta-values.  

  



Evaluation of modeling techniques for air quality management in Delhi 

  69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43  Correlation of PM2.5 concentrations with population density in the buffer around 

the monitoring stations.  

Although Population density didn’t turn out to show good correlations with PM2.5, model 

optimizations were performed and  spatial maps was prepared using this as the spatial 

parameter to generate beta-values. The figure 44 represents estimated PM2.5 map for year 

2018 based on population, as spatial driver for construction of PM2.5 map on the study 

domain. The small coloured circle on the map represents monitoring locations and 

corresponding estimated modelled PM2.5 value. RIO interpolation technique is also applied 

over the entire region suggesting that interpolation scheme is able to introduce land use 

based local variation in estimated PM2.5 concentration at places where no monitoring data is 

available. In the map, highest concentration (100-120 µg/m3) was estimated at northern, 

central and eastern part of study domain indicating highly populated regions due to 

residential land cover pattern. The remaining part of study was estimated with less PM2.5 

concentration due to open space and cultivated land cover characteristics. It is evident that 

population density it not able to predict well the concentrations at the monitoring locations 

in Delhi.  

  



Evaluation of modeling techniques for air quality management in Delhi 

  70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44  Spatial map based on population density as the parameter  

 

The model values were characterized by high RMSE and BIAS values, and also showed very 

low spatial correlations (Figure 45).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 45  Performance of model using population density as the spatial driver – a) 

comparison of modelled and actual PM2.5 concentrations, b) Plots of ratios of Bias and RMSE 

to standard deviations    
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4.2.4 Comparison of ordinary krigging interpolation with RIO model results  

Spatial maps can also be prepared using simple krigging method of interpolation between 

the pollutant concentrations values between different stations in Delhi. Figure 46 shows the 

annual PM2.5 concentrations for the period Jan-Dec 2018 predicted using a) RIO model for 

LC3 scenario b) normal Krigging interpolation method. A comparison of the two maps 

evidently depicts the advantages of the RIO model as it is able to highlight the local 

variations in air quality based on local characteristics. Standard techniques have to rely only 

on the monitoring data themselves and their relative distances and correlations. RIO model 

can deal with the urban stations in a much better way by taking into account the local 

characteristics and assign lower and higher values to the relevant areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46  Comparison between results of RIO model and ordinary krigging method  
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4.2.5 Spatial model results for PM10  

Similar to optimization analysis of PM2.5, different landuse are used as spatial driver in our 

study domain to derive beta values for all 27 stations. Estimation of daily average 

concentration of PM10 for year 2018 (Jan-Dec) as a function of β parameter derived using LC2 

optimization scenarios was in terms of fitting of the curve. LC2 scenario Beta values 

computed using all the three scenarios was used for prediction of values at the locations 

where no monitoring stations is available.   Figure 47 shows the model optimization runs for 

the LC2 scenario for PM10. The trend yielded fit that shows r2 value of 0.39, and RMSE of 

27.15. The model estimated highest concentration (>300 µg/m3) at station Wazirpur and 

Jahangir Puri characterized by industrial and residential land cover, respectively. Overall, 

the plot yielded observation that for high β values the concentration was also high at 

residential, industrial and traffic locations showing the local activities leading to local 

impacts on air quality.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47  Model optimization run for the LC2 scenario for PM10 (2018) 

 

The PM10 trend show a clear increase in PM levels with increasing beta-parameter, the 

remaining scatter of the stations around the trend line cannot be further optimized based on 

the land cover information as many monitoring stations in Delhi have a similar (urban) land 

cover foot print but still show fairly different annual average PM10 concentrations. 

Four monitoring stations have been neglected for the optimization of the trend for PM10 as a 

function of beta values, namely Anand Vihar, Okhla_, Najafgarh, and Pusa New Delhi. 

These stations have been added with manually adjusted beta values as their observations are 

not representative for the land cover in their vicinity.  
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Model validation was also carried out for PM10 concentrations before generation of spatial 

maps.  

Model validation: PM10  

The optimized model for PM10 needs to be validated on both spatial and temporal scales.  

 

Spatial Validation 

Spatial validation of the model results for PM10 during year 2018 was carried out by 

considering leaving one out approach using LC2 as spatial driver. Such approach was 

carried out for all the stations in which model results (after leaving out 1 particular station 

for estimation of β trends) were compared with the observed concentration value. Figure 48 

shows the results of spatial validation under LC2 scenario. It was observed from the 

correlation plot that optimized modelled values for most stations were close to their 

observation however, few stations showed over estimation of predicted modelled values. 

LC2 scenario is able to introduce best correlation fit between PM10 and beta values based on 

landuse characteristics of the different monitoring stations. The coefficient of correlation was 

found to be 0.60 whereas in case of 2018(Jan-Jul) model run the R2 value was 0.61, producing 

not much difference in model output. Overall, the RMSE value was 27.25 while bias 

remaining at -1.56. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 48  Model validation for PM10 under LC2 scenario -  Spatial 

 

The validation proves the potential of the RIO model to capture the PM10 gradients in the 

city of Delhi well. The remaining scatter can only be further addressed by using more 
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detailed spatial information or adding a dispersion model to better capture local effects at an 

increased resolution. 

 

Temporal validation 

Along with spatial validations, temporal validations were also carried out. The model 

developed using β values and annual average pollutant concentration is used to predict 

daily pollutant concentration for PM10 under LC2 scenario. The daily modelled PM10 values 

are compared with observations at different stations. For comparative evaluation, three 

performance metrics were chosen-coefficient of correlation (R2), bias and RMSE. 

Figure 48 shows the three plots under LC2 scenario showing the coefficient of correlation, 

bias and RMSE values between daily modelled and actual pollutant concentration for 

different stations. It was observed from Figure 49 that all the stations showed strong 

temporal correlation between the stations with daily observed concentration having R2>0.8. 

The estimated output shows satisfactory performance of the model for predicting daily 

variations of concentrations at different stations.  Most stations also showed less bias for 

estimated modelled values, when compared to daily observed value. The bias remained less 

than ±20 µg/m3 for most stations, however, some of stations showed bias more than 

20µg/m3. The results also showed low RMSE values for most of the locations, however, 

except for two stations where higher RMSE values >80 µg/m3 were observed. Temporal 

RMSE and BIAS values range between 30 and 90 µg/m³ and -60 to 40 µg/m³, respectively. 

Overall, this can be concluded that for most of the stations the RIO spatial model is 

performing satisfactorily for entire year 2018 (Jan-Dec) for PM10 and, hence, can be used for 

prediction of values at other locations in the city and generation of spatial air quality maps.  
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Figure 49 Temproal validation of daily modelled concetraitons with actual values at 

different stations under LC2 scenario  

Figure 50 shows the plots of ratios of a) bias to standard deviation, and b) RMSE to standard 

deviation. It is evident that the model has very low bias and high precision. Most values 

show low RMSE/σ values for most stations.   
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Figure 50 Ratios of a) bias to std. deviation and b) RMSE to std. deviation between the 

modelled and predicted values of PM10 at different stations in 2018.  

Each dot represents one station, the value on x-axis is the ratio of the centered root mean 

square error CRMSE over the standard deviation of the observations and the y-axis the ratio 

of the bias over the standard deviation of the observations (introduction of the target plot for 

model performance evaluation in Pederzoli et al. 2012, IJEP 50, 175-189, Performance criteria 

for the benchmarking of air quality model regulatory applications: The 'target' approach). 

4.2.6 Generation of spatial PM10 maps for Delhi  

Once the model is validated this can be reliably used for prediction of pollutant 

concentrations at the locations, where there is no monitoring stations available. The 

predicted values can then be used to generate spatial air quality maps for various pollutants 

on daily, monthly or annual basis. Figure 51 presents the spatial PM10 map for year 2018 

(Jan-Dec) based on LC2 scenario, for the study domain. The small coloured circles on the 

map represent monitoring locations. This can be observed that the colour in the circle 

generally corresponds to the PM10 values estimated by the RIO model value. The map also 

suggests that RIO interpolation technique is able to introduce land use based local variation 

in estimated PM10 concentration at places where no monitoring data is available. It could be 

observed from the map that highest concentration (300-350 µg/m3) was estimated at some 
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northern, central and south-eastern part of study domain indicating hot spots mostly 

characterized by urban and industrial land cover. High contribution with concentration 

value of 275-300 µg/m3 was also estimated at few northern and central region of the map 

mostly covered by urban/residential area or traffic location. Model still estimated high 

contribution (250-275 µg/m3) at central part of study domain characterized by 

urban/residential area or traffic bound location.  The remaining part of study region i.e 

northern and southern area was estimated with high concentration (225-250 µg/m3). 

However, green cover and open space area was still estimated with high concentration (175-

200 µg/m3). Even considering low β value during optimization, the remaining part of study 

domain with cultivated land cover region was also estimated with high concentration 

suggesting the impact of agriculture crop burning or background contributions from outside 

of Delhi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51  Spatial maps for PM10  for 2018 under LC2 scenario 
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4.3 Discussion of results of spatial model  

The spatial representation of monthly average PM10 and PM2.5 concentrations in Delhi from 

January 2018 until March 2019 are depicted in Annexure I. The air pollution levels in Delhi 

show a strong seasonal variability with much lower pollution levels from July until 

September 2018 (monsoon season) and highest pollution levels in winter months of 

December and January. The spatial pattern of the concentration levels in Delhi is not 

significantly varying throughout the year, the absolute concentration levels do vary 

significantly. Each map shows the monthly average result from the RIO model and the 

monthly average station observations as overlay. Based on the results of the RIO model, it 

associates increased PM levels with more populated and more industrialized areas 

additional to the interpolation of the observations of the monitoring stations. The RIO model 

indicates several zones with increased PM levels, among which the following are identified 

as hotspots: 

 

 Rampura Industrial Area and surroundings (28.680495◦N – 77.148103◦E) 

 Narela Mandi – industrialized zone (28.831564◦N – 77.101166◦E) 

 Bawana industrial area (28.789968◦N – 77.053402◦E) 

 Rohini, Timarpur, North of Ashok Nagar 

 Area around stations Jahangir Puri and Wazirpur 

 Noida Sector 15 (28.586123◦ N – 77.313648◦ E) 

 

An overlay of the annual average concentration maps for PM2.5 and PM10 with the land use 

data has been made to calculate the landuse wise averages for both pollutants. Table 16 

show the average concentration levels for the different land uses in Delhi (2018).  

Table 16 Average concentration levels for different land uses in Delhi for 2018 

 

 

 

 

 

 

 

 

 

 

 

 

Table 16 shows that the PM levels in different landuse categories of Delhi are varying 

considerably across different landuse categories. Annual average PM10 levels across different 

landuse categories in Delhi varied between 198 and 315.5 µg/m3 with a standard deviation of 

±34.9 µg/m3 whereas the PM2.5 levels ranged between 83.5 and 129.9 µg/m3 with a standard 

deviation of ±16.9 µg/m3. High PM levels are observed at industrial landuse category 

followed by commercial, residential landuse in Delhi. However, green area, cultivated land, 

water body etc. are also estimated with high PM levels in Delhi. 

Land use class Total area 

(km²) 

PM2.5 

(µg/m³) 

SD 

PM2.5 

(µg/m³) 

PM10 

(µg/m³) 

SD 

PM10 

(µg/m³) 

Commercial Centre 13.5 116.8 ±9.2 261.1 ±22.0 

Cultivated Land 551.2 105.9 ±9.8 227.8 ±14.8 

Green Area 85.0 95.9 ±18.8 219.5 ±30.5 

Industrial Area 28.3 129.9 ±15.1 315.5 ±40.1 

Open Space 58.0 83.5 ±16.7 199.7 ±23.1 

Others 40.6 83.7 ±11.5 198.0 ±13.8 

Residential Area 680.9 115.0 ±10.9 250.7 ±21.1 

Water Body 22.9 106.0 ±13.6 231.5 ±23.0 

Grand Total 1481.4 108.4 ±16.9 237.7    ±34.9 
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4.4 Conclusion: spatial modelling  

 RIO has been set up successfully for the city of Delhi using data from  all continuous 

stations operational in two time-frames a) 2015-2017, b) 2018 (Jan-Dec), c) 2019 (Jan-

Mar) 

 In this project, we focus on PM10 and PM2.5 as the pollutant of concerns and pollutants 

like NO2 and O3 can be dealt later with the further studies on identification of 

appropriate drivers to account for local concentrations.  

 Air pollution levels in Delhi show strong seasonal variability with much lower 

pollution levels from July until September 2018 (monsoon season) and highest 

pollution levels in winter months of December and January. The spatial pattern of 

the pollution remains fairly constant through the year. PM concentrations are highest 

in the northern part of Central Delhi and the densely populated area on the Yamuna 

river’s east bank. The PM concentrations in New Delhi and the greener southern part 

and the city’s outskirts (more cultivated land) are lower. 

 A spatial driver beta has been developed for PM2.5 based on land use due to 

significant correlations) with its initial conditions derived using the available 

emissions inventory. Correlation between PM concentrations and population density 

were found to be quite small and not used. 

 Compared to other RIO set-ups in Belgium, Netherlands and Eastern Europe, the 

results for PM10 and PM2.5 can be considered satisfactory.  

 Another option to further improve RIO could be to use detailed traffic count 

information, if detailed traffic emissions are not available. 

 Outliers (PM): Four stations do not agree well with the trends observed for other 

stations, mainly due to very local activities influencing their air quality patterns. 

These are Okhla Phase II, Najafgarh, Anand Vihar and Pusa road. They were dealt 

separately to refine the analysis. 

 Looking at the land use foot prints, it is noteworthy to mention that the footprints of 

all stations are heavily affected by residential land use. 

 RIO performed much better than the Ordinary Kriging and displays the local 

landuse influences. 

 The RIO model successfully develops spatial maps for PM2.5 and PM10 concentrations 

in Delhi, which can be used for hotspot planning and control. 

 For both pollutants, O3 and NO2, a correlation analysis with several spatial drivers 

has been performed. No meaningful correlation could be found between NO2 

concentrations and most variables (population density, distance to roads, residential 

area fraction within buffer). Land use data did not prove to be a good spatial driver 

for NO2 either. Further research would be needed to identify a suitable spatial driver 

for NO2. 

 The correlation analysis for O3 showed more promising results. Interestingly, the 

residential land cover class shows quite a strong correlation across the different 

buffer radii which were tested, but the GHS population dataset did not show good 

correlations.  

 A further research option would be to test satellite data with tropospheric ozone 

column densities and tropospheric NO2 concentrations or high resolution emission 

maps for Delhi. Currently, we choose to focus on PM10 and PM2.5 as these are the 

most important pollutants in the Delhi area. 
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5. OVL model: Forecasting setup  
This chapter provides the details of the forecasting model setup for the two datasets – a) 

2015-2017, b) 2018. The model forecasts are validated with the actual observations for three 

months in 2019 (Jan-Mar).   

5.1 Forecasting setup (2015 – 2017) 

The following sections describe the air quality forecasting model setup for the city of Delhi. 

For the purpose of training of the air quality forecasting model, the NCEP FNL (National 

Centre for Environmental Prediction Final) data historic archives have been used. Usage of 

ECMWF (European Centre for Medium-range Weather Forecast) data or local weather data 

would ideally be preferable as ECMWF performs better when compared with NCEP system 

(Roberto 2004); however FNL/GFS is freely available and well suited to test the 

methodology.  

5.1.1 Methodology   

Temporal and spatial variation of PM and other pollutants for a particular region is 

determined by complex interplay of many parameters.  The primary objective is to develop a 

forecasting model for daily average PM and other pollutants at 0900 h of day 0. The model 

has been developed to predict the ground level values of pollutants like <PM>day N,<O3>day N 

and <NO2>day N for days N=0,1,2,3,4, for different monitoring sites in Delhi. Special emphasis 

has been put on forecasting of typically high PM concentrations, which can then be used for 

triggering a warning signal. The forecasting model is setup based on the philosophy that 

forecasted pollutant concentrations will depend on previous days concentrations and 

forecasted meteorology for the next few days. The most important input parameters for the 

purposes of air pollutant forecasting are: 

Initial conditions: variables measured before 9h of day0 

Future conditions: forecasted meteorological variables 

Target: <pollutant>day N 

For development of representative model, a large historical dataset of pollutant 

concentration for period a) 2015-2017 b) 2018 was collected and used. For each monitoring 

station, an artificial neural network NN was designed to establish a statistical relationship 

between chosen inputs and target forecasted pollutant values- <PM>day N,<O3>day N and 

<NO2>day N. For initial condition as input variables we considered: average pollutant 

concentration of first 9h of day0 and forecasted meteorological parameters includes: average 

boundary layer height (BLH), wind direction, temperature, RH, cloud cover etc. The 

interplay of different input parameter plays vital role in forecasting of air pollutants. Among 

these, a) BLH is a very important parameter as an input to NN, which determines the height 

up to which the pollutants can disperse due to turbulence in lower troposphere, b) wind 

speed determining the atmospheric advection of pollutants, c) temperature impacting the 

diffusion of pollutants, d) cloud cover influencing the formation of secondary pollutants, are 

the important ones consider for forecasting. Other than these, wind direction and day of 

week were the other two parameters considered as input variables since they can also play 

an important role in determining concentrations on a specific day or at a specific station. 

Moreover, for each monitoring station, ANN based forecasting model has been developed 
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and evaluations were carried out to assess the accuracy of forecasted values against actual 

observations.  

5.1.1.1 Meteo-processing and correlation analysis 

From the FNL data archives, we downloaded the meteorological data for 2015-2018 in grib 

format and extracted the following parameters (Table 17) for the Delhi study domain: 

Table 17  Parameters extracted over the Delhi domain from FNL data archive 

PAR Meteo parameter 

P01 2m temperature [K] 

P02 2m relative humidity [%] 

P03 10m v component of wind [m/s] 

P04 10m u component of wind [m/s] 

P05 planetary boundary layer height [M] 

P06 Total cloud cover entire atmosphere 

P07 high cloud cover 

P08 low cloud cover 

P09 medium cloud cover 

P10 975mb - 1000mb inversion strength [K] 

P11 950mb - 1000mb inversion strength (~500 m ) [K] 

P12 925mb - 1000mb inversion strength [K] 

P13 900mb - 1000mb inversion strength (~1 km) [K] 

P14 850mb - 1000mb inversion strength (~1.5 km) [K] 

P15 dwsp/dz (shear stress) between bottom two layers (975mb - 1000mb) 

More variables can also be included in this list depending on the availability of data (e.g. 

precipitation). First, a correlation analysis was performed between with the daily averaged 

concentrations for different stations and different variables. Based upon this analysis, 

parameters, which showed high correlations, were selected for construction of an initial 

model architecture to forecasts the day+N daily mean concentrations. The selected model 

parameters are presented in Table 18.   

Table 18  Parameters for model input vector 

Parameter Description 

CAVG_DAY0 Measured concentration average in the morning of day0, assuming the forecast will 

be started at 9h LT 

CAVG_DAYM1 Measured concentration average for day-1 

BLH_DAYN Average dayN boundary layer height as calculated by the meteo model 

T2M_DAYN Average dayN 2m air temperature 

RH_DAYN Average dayN 2m relative humidity  

IS975_DAYN Average dayN temperature difference between 975 mb and 1000 mb model layer [K] 

IS950_DAYN Average dayN temperature difference between 950 mb and 1000 mb model layer [K] 

IS925_DAYN Average dayN temperature difference between 925 mb and 1000 mb model layer [K] 

U10_DAYNM1_DAYN Average zonal (west-east) wind speed between dayN-1 at 12:00 and dayN at12:00 

V10_DAYNM1_DAYN Average meridional (south-north) wind speed between dayN-1 at 12:00 and dayN 

at12:00 

WEEKEND 0 : weekday, 1 : weekend 
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As an example correlation plots for the pollutant PM10 – day+1 forecasts is shown in Figure 

52.   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52  Correlation analysis for selected meteorological parameters in the ANN models. 

the horizontal axes show the input model parameter, the vertical axis shows the natural 

logarithm of the daily averaged PM10 concentrations. 

As expected, high correlations were observed between PM10 concentrations with Day0 (same 

day concentrations till 9 AM) and Day M1 (previous day’s concentrations). Interestingly the 

correlation with Boundary Layer Height (BLH) shows a bi-modal structure, which needs to 

be analyzed further. This could be due to the different seasons in India (wet vs. dry), 

circulation patterns, long range transport or mixing of particulate matter from aloft to 

ground levels. Inverse correlations have been observed between PM10 concentrations and 

RH and Temperature. Increased RH can lead to wet deposition, while higher temperature 

can also lead to lowering of PM10 concentrations due to more dispersion. Figure 53 shows a 

correlation analysis, averaged over different stations for each pollutant. Each bar represents 

the Pearson correlation coefficient for the day+ 1 daily averaged concentration with the 

Artificial Neural Network (ANN) model input vector.  

  



Evaluation of modeling techniques for air quality management in Delhi 

  83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53 Correlation analysis, averaged over the stations for each pollutant  

 

It is evident from figure 52 that:  

a) correlation with the day 1 and day 0 observations is the strongest 

b) O3 shows opposite correlation with BLH than PM and NO2, which is expected as 

ozone gets depleted due to titration reactions with local NO emissions. 

c) RH shows negative correlation with all respective pollutants indicating downwash 

effect 

d) Temperature (T2M) showed negative correlation with NO2 and PM suggesting high 

PM concentration at low temperature. This is due to lesser dispersive conditions in 

low temperatures.  

5.1.1.2 Neural network approach 

For forecasting of air pollutants, we need to produce an output variable which should be a 

good estimate for the pollutant concentrations for the next (day1). This is to be based on a set 

of known input variables. This calls for a statistical model which fits the relationship 

between the input variables and targeted forecast of pollutant concentrations. The model 

hence needs to be developed based on historical datasets which depict relationships between 

input and output variables. These relationships are most likely non-linear, and hence basic 

parametric regression techniques are not so effective. In this case, a neural network 

approach is more appropriate. A detailed introduction to the NN techniques is given in 

Bishop (1995).  

In this, for different monitoring site, a NN has to be designed to establish a fit function 

between the chosen inputs and targeted pollutant concentrations. Historical datasets are 

collected for both input and output variable. A part of the dataset is used for the training of 

the neural network and the rest is used for validation of the model.  
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5.2 Initial forecast validation results 

The performance of NN and validation of forecast result is determined by comparing the 

measured pollutant concentration with forecasted precision value for each monitoring 

station. The measurement of performance is described in terms of various performance 

metrics- NMB, RMSE and R2 between observed concentration value and forecasted result. 

NMB, RSME and R2 denote Normalized mean bias, Root Mean Square Error value and 

coefficient of correlation. In this study, the forecast horizon is evaluated through the next 5 

days for all monitoring stations. 

Validation of results of different pollutants was carried out for various stations in Delhi. The 

day+1 forecast values are compared with actual observations. The normalized mean bias 

values between observed concentration and forecasts value is presented in Figure 54. It is 

evident that most of the stations show low negative bias values but some stations (like 

ANAD1 and PUNJAB) were observed with high biased value for O3 and PM2.5 indicating 

under estimation of model prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54  NMB value between observed concentration and forecasts for different pollutant 

at various stations (2017) 

 

Figure 55 indicates RMSE value between observed concentration and forecasts. Evidently, 

most stations showed low error value, except at PUNJABI BAGH where RMSE was found to 

be higher for all pollutants. In terms of NO2 , high error values were observed at ITO and 

LODHI road stations. Overall, the model has generated satisfactory forecasts for different 

pollutant concentration. 
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Figure 55  RMSE between observed concentration and forecasts for different stations and 

pollutants (2017) 

 

Figure 56 indicates coefficient of correlation between forecasts and observed concentration 

for different pollutants at each of the monitoring location. NO2 and PM2.5 have shown higher 

correlation (R2>0.5) for all the stations, whereas, PM10 was forecasted with high correlation at 

four out of five stations suggesting satisfactory performance of the forecasting model. At all 

the locations, O3 shows poor correlation between the observed and the predicted values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56  Coefficient of correlation between observed concentration and forecasted 

prediction value 

 

5.2.1 Validation as a function of forecast horizon 

Comparison of forecast model with observed concentration for forecast horizon of 5 days is 

also carried out. The performance of the model is again adjudged in terms of R2 and NMB 

plots. Figure 57 and 58 show the temporal R2 and NMB for daily average concentrations of 

all the stations for the 5-day forecast horizon. 
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Figure 57  Coefficient of correlation between actual and predicted daily average 

concentrations in the forecast horizon of 5 days 

* Each dot represents an average over all the stations 

 

The model shows high correlation for day0 with R2>0.7 for all pollutants, however, the 

performance deteriorates over the next four days for all respective pollutant. Moreover, it 

can be interpreted that PM2.5 showed better correlation throughout forecast horizon ti 

comparison to other pollutants- PM10, NO2 and O3. 
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Figure 57 shows the normalized mean bias of the model for the forecast horizon of 5 days for 

different pollutants.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58 Normalized mean bias for daily average concentrations - raw ANN as a function 

of forecast horizon, each dot represents an average over the stations. 

 

It is evident from figure 58 that the forecasting model is under-predicting and the bias was 

observed to be negative for all pollutants, throughout forecast horizon of four days. 

Minimum bias was witnessed for NO2 whereas higher bias was observed for PM2.5. 

Moreover, we can say model have satisfactorily forecasted concentrations of all pollutants 

showing limited bias for most locations indicating validation of forecasted results. The 

overall negative bias shows the under estimation of model prediction. 

5.3 Forecasting model setup (2018) 

Along with the preliminary findings for the monitoring data for 2015-2017, additional data 

of Jan-Dec 2018 was collected in order to improve the forecasting model. In addition to the 

parameters considered in the previous case, two new parameters have been added and 

analysed- Total precipitation from the FNL meteo archives and daily number of fire events 

in the surroundings of Delhi from the MODIS database.  

5.3.1 Meteo processing and correlation analysis 

From the FNL data archives, the data for 2018 has been also downloaded in grib format. 

Table 19 shows the parameters extracted over the Delhi domain from the FNL data archives. 
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Table 19  Parameters extracted over the Delhi domain from FNL data archive 

PAR Meteo parameter 

P01 2m temperature [K] 

P02 2m relative humidity [%] 

P03 10m v component of wind [m/s] 

P04 10m u component of wind [m/s] 

P05 planetary boundary layer height [M] 

P06 Total cloud cover entire atmosphere 

P07 high cloud cover 

P08 low cloud cover 

P09 medium cloud cover 

P10 975mb - 1000mb inversion strength [K] 

P11 950mb - 1000mb inversion strength (~500 m ) [K] 

P12 925mb - 1000mb inversion strength [K] 

P13 900mb - 1000mb inversion strength (~1 km) [K] 

P14 850mb - 1000mb inversion strength (~1.5 km) [K] 

P15 dwsp/dz (shear stress) between bottom two layers (975mb - 1000mb) 

P16 Total precipitation 

 

First, a correlation analysis was performed between the daily averaged pollutant 

concentrations for different stations and different parameters. Based upon this analysis, 

parameters showing high correlation were selected to formulate initial model architecture.  

The model was then used to forecasts the day+N daily mean concentrations. Table 20 

represents the parameters selected for model input vector. 

Table 20  Parameters for the model input vector 

Parameter Description 

CAVG_DAY0 Measured concentration average in the morning of day0, assuming the forecast 

will be started at 9h LT 

CAVG_DAYM1 Measured concentration average for day-1 

BLH_DAYN Average dayN boundary layer height as calculated by the meteo model 

T2M_DAYN Average dayN 2m air temperature 

RH_DAYN Average dayN 2m relative humidity  

IS975_DAYN Average dayN temperature difference between 975 mb and 1000 mb model layer 

[K] 

IS950_DAYN Average dayN temperature difference between 950 mb and 1000 mb model layer 

[K] 

IS925_DAYN Average dayN temperature difference between 925 mb and 1000 mb model layer 

[K] 

U10_DAYNM1_DAYN Average zonal (west-east) wind speed between dayN-1 at 12:00 and dayN at12:00 

V10_DAYNM1_DAYN Average meridional (south-north) wind speed between dayN-1 at 12:00 and dayN 

at12:00 

TP_DAYN Average dayN total precipitation 

FIRE_DAYN Average number of fire events during three day period M1-0-N (day – 1, current 

day, day+1), threshold of 10 events for this average. 
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Compared to the setup for 2015-2017, the parameter weekend has been dropped as no 

significant correlation between this parameter and observations is found. The number of fire 

events has been averaged over a three days period and a threshold value of 10 events has 

been applied to remove noise. As an example, correlation plots for PM10 – day+1 forecasts for 

a station (Wazirpur) with different parameters are shown in Figure 59. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59  Correlation analysis for selected meteo parameters, concentrations and fire events 

in the ANN models.  
* The horizontal axes show the input model parameter, the vertical axis shows the natural logarithm 

of the daily averaged PM10 concentrations. 

 

The following important findings were observed: 

 Strong correlations with concentrations on day0 and day-1. 

 Interesting bi-modal structure in the correlation with boundary-layer-height 

 Strong inverse correlation with total precipitations 

 Limited correlation with number of fire events 

Figure 60 shows correlation analysis averaged over the stations for various pollutants. Each 

bar represents the Pearson correlation coefficient for the day+ 1 daily averaged concentration 

with the ANN model input vector. 
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Figure 60 Correlation analysis averaged over all stations for day+1 averaged concentrations 

based on observations from 01/01/2018 – 31/12/2018. 

This can be observed from figure 60 that  

 Correlations were strongest for day-1 and day0 observations and total precipitation  

 O3 shows opposite correlation with BLH and temperature than PM and NO2, which 

is normal as O3 gets reacted away due to local (NOx) emissions during stable 

episodes. 

 Correlation with number of fire events is fairly limited. 

 

The limited correlation with the number of fire events is further investigated. Figure 61 

shows the number of fire events from January 2017 until March 2019. Fire events are a yearly 

returning phenomenon around Delhi with a large peak in summers (burning wheat crop 

residues) and post monsoon seasons (due to burning of rice crop residues). The correlation 

with the number of fire events is fairly limited. Only during after the harvesting season, the 

number of fire events increases significantly and during the rest of the year this parameters 

remains low and uncorrelated with the changes in concentration levels. 

This is to be noted that the impact of these fire events will not only depend on the number of 

events and time of the year, but also on the dominant wind direction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 61 Daily number of fire events around Delhi from January 2017 until March 2019 
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5.3.2 Forecast model setup 2018 

A model with the twelve parameters listed in the previous section has been trained and 

optimized for PM2.5, PM10, O3 and NO2: CAVG_DAY0, CAVG_DAYM1, BLH_DAYN, 

T2M_DAYN, RH_DAYN, IS975_DAYN, IS950_DAYN, IS925_DAYN, 

U10_DAYNM1_DAYN, V10_DAYNM1_DAYN, TP_DAYN, FIRE_DAYN. This model has 

been applied, trained, optimized and validated for four different types of artificial neural 

networks (ANN): 

 No real time corrections (RTC) - No resampling (RS) (0-0), raw ANN 

 No real time corrections - Resampling (0-1) 

 Real time corrections - No resampling (1-0) 

 Real time corrections - Resampling (1-1) 

 

Real-time corrections: Based on the difference between the forecasted values and the 

observations during the past days, a correction can be applied to the forecast values. This is 

called real-time-corrections (or RTC). During the optimization of a neural network using 

RTC, the number of days on which to base the corrections is optimized using the historical 

data. The number of days varies between 0 (no RTC) and 20 days of observations on which 

to base the correction. The advantage of adding RTC, is that it enables to almost completely 

remove the bias in the forecasted values. The disadvantage might be that the forecast 

respond too slow to a change in conditions. 

In addition to the raw neural network output, the OPAQ forecast module contains a 

dynamic bias correction scheme as well. The daily forecasts as well as the observed values 

(as they become available) are stored in a temporary database. From this database a 

timeseries with past forecast errors can be reconstructed. Via a number of different methods 

a dynamic estimation of the current forecast error can be made. This can either simply be an 

average of the past forecast errors for a given forecast horizon, or a weighted average, where 

the errors further in the past are given less weight in the estimation of the current forecast 

error. When applying the estimated forecast error to the raw output of the ANN models, a 

“real time corrected” forecast is constructed. Again, the hindcast period over which to 

consider the forecast errors as well as the method and parameters for the estimation of the 

current forecast errors are optimized per station and per forecast horizon. 

 

Resampling: Resampling is used to ensure a dataset has sufficient observations with 

increased concentrations. Instead of using a dataset ‘as is’, the dataset can be resampled for 

training and optimization, so it can be better trained for these occasions with increased 

concentrations. 

5.3.4 Forecast model validation results (2018) 

A comparison of the model results for all pollutants is made using different performance 

metrics e.g. R2, RMSE, and bias. The sensitivity of model outputs was also tested with and 

without RTC and RS options.  The results for PM2.5 have been used to assess the impact of 

RTC and RS. All other pollutants have also shown similar behavior.  

The sensitivity assessment shows that real-time-corrections have a positive impact on the 

model results, as it leads to lower relative RMSE and corrects for most of the bias. However, 

resampling has a negative impact on the validation, leading to higher relative RMSE, lower 
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R2 and slightly increased normalized mean bias. This is not surprising as the observations in 

Delhi have sufficient periods with increased concentrations and resampling may not add 

further value. We therefore use real-time-corrections and do not include resampling for all 

four pollutants.  

 

Figure 61 shows the relative RMSE averaged over all stations as a function of forecast 

horizon from day0 to day4 for PM2.5. It is evident from Figure 62 that RMSE was lowest for 

the model optimized with real time correction (RTC) and No Resampling (RS) throughout 

the forecast horizon of day0 to day4. The model was trained and optimized with least error 

on day0, however for subsequent days, higher error was observed with No RTC and RS for 

PM10, O3 and NO2. In case of PM2.5, high error was accounted for model trained with No RTC 

and No RS optimization.  The model validation was found to be best with the RTC and 

without RS options. Overall, this can be concluded that the model shows satisfactory 

performance in forecasting the concentrations of various pollutants./  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62 Comparison of relative RMSE averaged over all stations for the forecast horizon 

for (a) PM2.5, (b) PM10, (c) O3 and (d) NO2.  
Blue: no RTC – no RS; Red: no RTC – RS; Green: RTC – no RS; Purple: RTC – RS. 

Figure 63 represents average relative RMSE for each station considering forecast horizon is 

made for day+1 i.e. next day for all pollutants. The model was forecasted with relative high 

error >0.5 for NO2 at 3 stations however for most locations relative RMSE was less varying 

between 0.3-0.4 indicating good validation of forecast output for all pollutants.  
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Figure 63 Relative RMSE per station for OPAQ Delhi model for year 2018 with RTC, no 

Resampling, forecast horizon day+1. Blue: NO2; Red: O3; Green: PM10; Purple: PM2.5 

 

Figure 64 represents the comparison of normalized mean bias averaged over all stations as 

function of forecast horizon of day0 to day4 for all pollutants. The model shows low bias for 

all the pollutants with RTC-No RS settings, whereas considering other optimization 

scenarios the model forecasted negative bias indicating under estimation of forecast result. 

The RTC-RS forecast scenarios have also shown low bias suggesting good validation of 

model output. Overall, the NMB was found to be very low in all the forecasting scenarios. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64 Comparison of normalized mean bias averaged over all stations for the forecast 

horizon for (a) PM2.5, (b) PM10, (c) O3 and (d) NO2. Blue: no RTC – no RS; Red: no RTC – 

RS; Green: RTC – no RS; Purple: RTC – RS. 



Evaluation of modeling techniques for air quality management in Delhi 

  94

Figure 65 indicates average normalized mean bias between observed concentration and 

forecasted value for each station for the forecast horizon of day+1 i.e. next day for respective 

pollutants. The model forecast showed less bias for most stations. However two stations, 

Najafgarh and Wazirpur were predicted with higher negative and positive bias for PM10 and 

O3, respectively, suggesting under estimation and over estimation of forecast output result. 

 

 

 

 

 

 

 

 

 

 

Figure 65 Average normalized mean bias per station for OPAQ Delhi model for year 2018 

with RTC, no Resampling, forecast horizon day+1. Blue: NO2; Red: O3; Green: PM10; 

Purple: PM2.5. 

Figure 66 represents the coefficient of correlation between the observed concentrations and 

forecasted results (averaged over all stations) for the forecast horizon of day0 to day4. It is 

evident that correlation was high for model trained and optimized considering No RTC-No 

RS and RTC-No RS event. The high correlation with R2>0.8 was observed for model trained 

and optimized with No RTC and RS for day 0, and it deteriorates in subsequent days. 

Figure 66 Comparison of R2 averaged over all stations for the forecast horizon for (a) PM2.5, 

(b) PM10, (c) O3/ and (d) NO2. Blue: no RTC – no RS; Red: no RTC – RS; Green: RTC – no 

RS; Purple: RTC – RS 
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Figure 67 indicates average relative R2 between observed concentration and forecasted 

value for each station considering forecast horizon is made for day+1 i.e. next day for 

respective pollutants. The model forecast showed good correlation with observed 

concentration having R2>0.5 for most stations for all pollutants indicating good validation of 

forecast output. However, for NO2 for few stations (e.g. Dwarka), the model results showed 

less correlation with observed concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67 Average R2 per station for OPAQ Delhi model for year 2018 with RTC, no 

Resampling, forecast horizon day+1. Blue: NO2; Red: O3; Green: PM10; Purple: PM2.5. 

Figure 68 represents the fraction of correct forecast (FCF) between the observed 

concentrations and forecasted results (averaged over all stations) for the forecast horizon of 

day0 to day4 for pollutant PM2.5 and PM10 respectively. It is evident that FCF was high for 

model trained and optimized considering RTC-No RS and RTC-RS options. The FCF was 

more than 80 for day0, however, went down for subsequent days.  Better forecasts were 

obtained for model trained and optimized with RTC and RS options. For PM10 forecasts 

were somewhat better than  PM10for various options.  

Figure 68 Comparison of FCF averaged over all stations as a function of forecast horizon for 

(a) PM2.5 and (b) PM10. Blue: no RTC – no RS; Red: no RTC – RS; Green: RTC – no RS; 

Purple: RTC – RS. 
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Figure 69 indicates average FCF between observed concentration and forecasted value for 

each station considering forecast horizon is made for day+1 i.e. next day for PM10 and PM2.5 

respectively. The model forecast showed FCF more than 60 for most stations indicating good 

validation of forecast output. However, in case of PM2.5 for few stations (e.g. IHBAS), the 

model results showed less FCF (<60) with observed concentration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 69 Average FCF of stations in Delhi for year 2018 for forecast horizon day+1. Blue: 

PM10; Red: PM2.5 

Figure 70 represents the Fraction of false alert (FFA) between the observed concentrations 

and forecasted result (average over all stations) for the forecast horizon of day0 to day4 for 

pollutant PM2.5 and PM10 respectively. It is evident that FFA was less for model trained and 

optimized considering No RTC-No RS event. The least false alert with FFA<5 was forecasted 

during day0. Number of events with high false alert was obtained for model trained and 

optimized with RTC and RS for both PM2.5 and PM10 respectively.  
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Figure 70 Comparison of FFA averaged over all stations as a function of forecast horizon for 

(a) PM2.5 and (b) PM10.  Blue: no RTC – no RS; Red: no RTC – RS; Green: RTC – no RS; Purple: 

RTC – RS 

 

Figure 71 indicates average FFA between observed concentration and forecasted value for 

each station considering forecast horizon is made for day+1 i.e. next day for PM10 and PM2.5 

respectively. The model forecast showed less false alerts with observed concentration having 

FFA<15 for most stations indicating good validation of forecasted output. However, for few 

stations (e.g. Aya Nagar), the model results showed high false alerts having FFA>25 with 

observed concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71 Average FFA per station for OPAQ Delhi model for year 2018 for forecast horizon 

day+1. Blue: PM10; Red: PM2.5 

5.4 Forecasting model pilot testing for 2019 

The OPAQ forecasting chain has been trained and optimized for 2018. The model has been 

tested for three months (Jan-Mar) in 2019. For purpose of research, three different 

forecasting models (based on selection  of variables) are tested: 
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Model1: 11 variables: 

CAVG_DAY0, CAVG_DAYM1, BLH_DAYN, T2M_DAYN, RH_DAYN, IS975_DAYN, 

IS950_DAYN, IS925_DAYN, U10_DAYNM1_DAYN, V10_DAYNM1_DAYN, TP_DAYN 

 

Model2: 12 variables:  

Model1 + FIRE_DAYNM3-DAYNM1 (average number of fire events in the last three days 

prior to the forecast day). 

 

Model3: 4 variables: 

CAVG_DAY0, BLH_DAYN, TP_DAYN, FIRE_DAYNM3-DAYNM1 

 

The observations for 2019 have been downloaded and converted to the OPAQ input format. 

The necessary meteo data have been downloaded as well (NCEP FNL - National Centre for 

Environmental Prediction Final). 

 

As first check, the overview of the available stations in 2019 has been made: 

Table 25 Number of stations with sufficient data in 2018 and 2019 

 2018 2019 Comments 

PM10 28 28 None 

PM2.5 29 29 Two additional stations for 2019 (not used: Anand_ and 

Dr_Kar) 

NO2 23 16 7 stations had NO2 data in 2018 but lack for 2019, 9 

stations have sufficient data in 2019 but could not be 

trained on 2018 due to insufficient data 

O3 24 24 7 additional stations available for 2019 which have not 

been trained on 2018 due to insufficient data 

 

Validation statistics 2019 are given in the figures below for all 4 pollutants as a function of 

forecast horizon. All statistics are averaged over all stations in Delhi (with sufficient 

observations, see table above). OPAQ is configured including real-time corrections. 

 

All three models have been tested for the first 3 months of 2019 on daily average basis. 

Based on the findings of 2018 dataset, all three models are tested with real-time-corrections 

and without re-sampling options. To run the validation, the observations for the first three 

months of 2019 have been converted to the input format of OPAQ. The FNL meteo data 

have been downloaded and converted to the input format.A comparison of all model results 

for all pollutants is made using different performance metrics e.g. R2, RMSE, and bias. 

 

Figure 72 shows the relative RMSE averaged over all stations as a function of forecast 

horizon from day0 to day4 for different pollutants tested on three different model run 

scenarios. It is evident that RMSE was lowest for model1 and model2 throughout the 

forecast horizon of day0 to day4. During the validation of model1 and model2, the 

forecasted values showed least error on day0 with RMSE<0.3 however, considering model3, 

the forecasted value was observed with higher error throughout the forecast horizon for all 
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the pollutants. Overall, the output suggests adding the variable of number of fire events to 

model1, model2 does not improve the prediction of the concentrations.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72 Comparison of relative RMSE considering all the models averaged over all 

stations for the forecast horizon for (a) PM2.5, (b) PM10, (c) O3 and (d) NO2. 

 

Figure 73 shows the comparison of normalized mean bias averaged over all stations as 

function of forecast horizon of day0 to day4 for different pollutants based on three different 

model run scenarios. The model1 showed low bias for all the pollutants compared to model2 

and model3, whereas considering other model run scenarios the forecasted values showed 

more positive and negative bias indicating over and under estimation of forecasted output. 

It was evident that adding the number of fire events data to model2 does not show 

improved output compared to model1. Considering model3, the optimization was observed 

with high bias in predicting the concentration. Overall, under model1 optimization, the 

NMB was found to be very low for all respective pollutants, hence, can be concluded as the 

best model in the present circumstances 
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Figure 73 Comparison of normalized mean bias considering all models averaged over all 

stations for the forecast horizon for (a) PM2.5, (b) PM10, (c) O3 and (d) NO2 

Figure 74 shows the coefficient of correlation between the observed concentrations and 

forecasted result (averaged over all stations) for the forecast horizon of day0 to day4 for all 

pollutants based on three different model run scenarios. It is evident that correlation was 

high for model trained and optimized with model1 and model2 compared to model3. The 

high correlation with R2>0.7 was forecasted during day0 for pollutant PM2.5, PM10 and NO2 

whereas R2<0.6 was forecasted for O3. Overall, the less correlation was forecasted for model 

trained and optimized with model3. It was also evident considering number of fire events 

data in model2 did not improve forecasting results of the pollutant concentration. Moreover, 

it can be interpreted that both model1 and model2 showed satisfactory performance in 

predicting the concentration for respective pollutants.  

 

 

 

 

 

 

 

 

 

 



Evaluation of modeling techniques for air quality management in Delhi 

  101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74 Comparison of R2 considering all models averaged over all stations for the 

forecast horizon for (a) PM2.5, (b) PM10, (c) O3 and (d) NO2 

5.5 Time series analysis of forecasts  

Time-series plots were prepared for several stations to compare forecasts with actual 

observations. Figure 75 presents the daily observed average PM2.5 concentrations at Ashok 

Vihar station and its comparison with forecasted concentrations in different scenario: 

forecast concentration for day+1 with no RTC and forecast concentration for day+1 with 

RTC. It could be interpreted that the forecasted concentration with RTC was close to 

observation value for most of the time throughout monitoring period. For both the forecast 

scenarios, the predicted concentrations were close to the observed concentrations for all 

months except for a few observations in the initial months and some extremely high 

concentrations in between. Very high concentrations are observed in the months of October 

to December, mainly on account of agricultural residue burning events and metereological 

adversity.    
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Figure 75  Comparison of daily observed PM2.5 average concentrations (yellow) at Ashok 

Vihar station with , predicted concentrations day+1 no RTC (blue), predicted concentrations 

day +1 with RTC (green). 

 

 
 

Figure 76  Comparison of daily observed PM2.5 average concentrations (yellow) at Major 

Dhyan Chand station with , predicted concentrations day+1 no RTC (blue), predicted 

concentrations day +1 with RTC (green). 

Figure 76 indicates comparison of observed daily average PM2.5 concentrations at station 

Major Dhyanchand with the forecasted values in different scenario: forecast concentration 

for day+1 with no RTC and forecast concentration for day+1 with RTC. Here also the trend 

was found to be similar to that of Ashok Vihar location. Forecasted concentrations with RTC 

option were found to be closer to the observation values throughout monitoring period. 

However, some of the peak values were not so well predicted by the model.  



Evaluation of modeling techniques for air quality management in Delhi 

  103

 
 

Figure 77  Comparison of daily observed PM2.5 average concentrations (yellow) at 

Wazirpur station with , predicted concentrations day+1 no RTC (blue), predicted 

concentrations day +1 with RTC (green). 

Figure 77 indicates comparison of observed daily average PM2.5 concentrations at station 

Wazirpur with forecasted concentrations in different forecast scenarios: forecast 

concentration for day+1 with no RTC and forecast concentration for day+1 with RTC. It 

could be interpreted that the forecasted concentration with RTC was closer to observation 

values throughout the monitoring period. RTC options helps in better prediction of the 

peaks, which are not so well predicted in the model.   

 

 
 

Figure 78  Comparison of daily observed PM2.5 average concentrations (yellow) at NSIT 

Dwarka station with , predicted concentrations day+1 no RTC (blue), predicted 

concentrations day +1 with RTC (green). 

Figure 78 represents the daily average PM2.5 concentrations at station NSIT Dwarka 

considering observed concentration and different forecast scenario: forecast concentration 

for day+1 with no RTC and forecast concentration for day+1 with RTC. The trend shown in 

this location is also similar to that observed for other locations in which forecasted 
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concentration with RTC was close to observation value throughout monitoring period, 

except for very high pollution concentrations. Both the scenarios are showing good 

correlation with the observed concentrations for all months except for a few very high 

observations RTC helps improving the forecasts  

5.6 Conclusion 

 Correlation analysis showed strong correlation of pollutant concentrations with 

concentrations of previous days and meteorological variables like boundary layer 

height, temperature, precipitation etc and hence integrated into the forecasting 

model for predictive purpose.  

 Forecasting model satisfactorily predicts pollutant concentrations at most 

stations.   

 RTC -Real time corrections have been tested and found to  to improve the model 

performance .  

 Correlation with the number of fire events with the pollutant concentrations was 

found to be is fairly limited when full year dataset has been considerd. Therefore 

adding the fire events (average fire events over the past 3 days) as extra variables 

does not make a difference for the validation statistics. 

 Longer time series to train the model, as well as improved meteorological 

datasets can improve the model configuration and may lead to better prediction 

efficiencies. 

 Reducing the variables (concentration_day0 until 9am, boundary layer height, 

total precipitation, fire events) is not adding any benefit to the outputs, in fact it 

deteriorates performance. 
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6. Training Program on spatial mapping and forecasting 

models  

A one day training program was conducted for officials of CPCB by technical experts from 

VITO, Belgium in March 2019 at CPCB office in Delhi to understand the basic concepts and 

use of spatial (RIO) and forecasting (OVL) models.  The training program was attended by 

officials from CPCB and TERI. The basic objective of the training program was to build the 

capacity within CPCB in setting up spatial and forecasting models.  

Dr Shukla from CPCB welcomed the experts from VITO and explained the need for 

conducting such training program in India.  

Dr Sumit Sharma from TERI explained the project objectives, TERI’s association with VITO 

and the models developed by VITO for spatial mapping and forecasting of air pollutants.   

Ms Byth Lisa from VITO explained at length their experience in air quality modelling in the 

context of the EU AQ directive: application of models for forecasting, assessment and 

planning. 

This was followed by a brief presentation Dr Stijn Janssen from VITO on the OVL and RIO 

models. The specific goal of his presentation was to make the attendees understand (in basic 

terms) how the models work and what data is required to run the model.  

This was followed by presentation by Mr Stijn Vranckx, VITO on the configuration of the 

models for Delhi. The main objectives of his presentation was to  understand the 

participants about the data requirements to set-up the model, the steps taken to set-up the 

model and how the data impacts the performance. He explained the participants starting 

from the data clean-up to the final configuration and the validation done to-date.  He also 

presented on how to use the user interface for the manual daily check of the performance of 

OVL. 
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7. Conclusion 

Spatial mapping and forecasting of air pollutants is very important to understand and plan 

mitigative actions for control. They can also be useful in drafting adaptive strategies to 

reduce the exposure of pollutants to larger populations. In this study, TERI with support 

from VITO customised a spatial mapping and a forecasting model for the city of Delhi. 

These models have been previously used in several parts of the world. During the course of 

the study, both spatial mapping and forecasting model has been successfully setup, 

validated, and tested for the city of Delhi. Along with the model setup, a training program 

was also organised for the CPCB officials to train the officials for regular use of the models.    

In case of the spatial model, PM has been more adequately mapped than other gaseous 

pollutants and further research is required to develop parameters for adequate spatial 

interpolation of these pollutants. The spatial maps prepared using the validated RIO model 

shows distinct seasonal variation, and also highlights the hotspot regions in the city. The 

whole city is under the influence of high pollutant levels depicting high background 

concentrations and widespread local sources (like vehicles). However, certain industrial 

regions are found to be even more polluted and showed up as hotspots. Other than 

industries, the whole western and north western of Delhi, North of Ashok Vihar, Rohini, 

Timarpur, area around stations of Janhangir Puri and Wazirpur were also identified as the 

hotspots in the city.  

Forecasting of pollutants using the OVL model shows satisfactory performance for most part 

of the year, except for some peaks of pollutants concentrations which could not be so well 

reproduced by the model. The performance of the model for prediction of peaks improves 

considerably with the usage of RTC option. Use of longer term datasets (about 3-4 years) 

could further improve the model performance for the city.  

The models are satisfactorily tested and ready to be used for demonstrative purposes for the 

city of Delhi. Moreover, the models can now be replicated in other cities after required 

setting up, validation, and testing procedures.  
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Annexure I: Monthly spatial maps for PM2.5 from January 

2018 to March 2019 
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Annexure  II: Data cleaning procedures 

 

Goal: to clean up the time series of all monitoring stations to have data suited to train the 

neural network modelling chain OPAQ by inspection of the data and filtering of spikes and 

insufficient data. 

Tools:  

 Filtering on hard limits: lower limit and upper limit (example: stations reporting 

incorrect data such as NO2 and PM levels below 1) 

 Removing a selection of dates (example: stations reporting constant data for several 

days) 

 Hampel filter and Gaussian anomaly detection to remove spikes 

 Removing some of the stations as the data show a strange behaviour 

 

The following steps have been taken to clean all data: 

 For each station, the time series of the observations have been plotted and 

visually inspected to leave out (part of) time series which show strange trends 

(for example constant observations over longer periods) 

 A clean up step has been completed, to ensure we are only using valid 

observations. This consist of two step. Firstly a hard limit filter has been applied 

to exclude observations which are lower than 2 µg/m³ for PM10 and PM2.5, 1 

µg/m³ for NO2, which seems to be ‘no data’ but registered as ‘0’ or ‘1’. This 

output is used for RIO to generate air quality maps for Delhi. Secondly, I have 

applied a Hampel filter (logtransform, window width 3, threshold 3) to remove 

spikes. For each sample of x, the function computes the median of a window 

composed of the sample and its six surrounding samples, three per side. It also 

estimates the standard deviation of each sample about its window median using 

the median absolute deviation. If a sample differs from the median by more than 

three standard deviations, it is replaced with the median. The filter is applied on 

log-transformed values. More information Hampel filter, see 

https://nl.mathworks.com/help/signal/ref/hampel.html. 

 

For example, the clean-up process carried out for PM2.5 time series of station Anand Vihar 

and Civil Lines is shown in figure below. Similar approach has been carried out for all the 

stations for pollutants PM10, PM2.5, O3 and NO2. 

 

 

 

 

 

 

 

 

 

 

https://nl.mathworks.com/help/signal/ref/hampel.html
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PM2.5 time series of station Anand Vihar, original in grey, corrected data in red. Data have been 

used after filtering. 

 

 

 

 

 
 

 

 

 

 

 

 

PM2.5 time series of station Civil Lines, data have NOT been used due to inadequate data points. 

 
 

Annexure III: Seasonal Spatial Map for hotspot identification 

Spatial PM10 maps for different seasons: Summer, post-monsoon and winter is represented 

are made below. The spatial map clearly suggests RIO interpolation technique has able to 

introduce land used based local variation in estimating PM10 concentration and identifying 

the potential hotspots locations across entire territory of Delhi. The concentration during 

different seasons followed seasonal trend, predicting higher values during winter and post-

monsoon months and least during summer period. The model predicted concentration in 

the range 250-300 µg/m3 in northern and central part of domain region and fewer locations 

estimated with higher concentration (400-450 µg/m3) mostly characterized by urban and 

industrial land cover pattern. However, the hot spot regions with estimated concentration in 

the range 350-400 µg/m3 identified during post-monsoon and winter seasons were located in 

north-western, central and few south-eastern part of city domain. The hot spots identified 

during post-monsoon and winter phase were mostly characterized by residential, industrial 

and traffic bound locations indicating local emissions could have phenomenon impact on 

regional air quality. It was observed a significant proportion of locations mostly 

characterized by industrial land cover were identified as hot spot locations suggesting the 

concentration at such location remained higher throughout the year regardless of season. In 

fact it is also observed from the maps regardless of season the model still envisaged with 

highest concentration (400-450 µg/m3) in north-western part of city domain. Higher 

concentration estimated during winter period could be because of favourable meteorological 

conditions: temperature inversion, low wind patterns and shallow boundary layer heights.    
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SUMMER (April-May-June) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) BAWANA 

2) SHAHPUR GARHI VILLAGE-RAZA PUR VILLAGE-BHOR GARH VILLAGE-   

KURENAI VILLAGE 

3) KANJHAWALA VILLAGE 

4) SWEEPERS COLONY-SECTOR 18F 

5) SANJAY NAGAR-JJ COLONY-POORVI BLOCK BB-SHALIMAR BAGH 

INDUSTRIAL AREA-BLOCK J4 

6) JJ COLONY 2-BLOCK A 

7) PEERAGARHI UDYOG NAGAR 

8) SHARDA NIKETAN 

9) DR LOHIA-RAMPURA VILLAGE-TRI NGAR-SHAKTI NAGAR 

10) DILKHUSH BAGH INDUSTRIAL AREA 

11) ISHWAR COLONY-SATYAWATI NAGAR 

12) NAYI BASTI-THAKABAPA NAGAR 

13) BALJIT NAGAR 
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14) MAYAPURI INDUSTRIAL AREA PHASE 1 

15) OKHLA INDUSTRIAL AREA 

 

POST MONSOON (Oct-Nov) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) BAWANA 

2) SHAHPUR GARHI VILLAGE-RAZA PUR VILLAGE-BHOR GARH VILLAGE-

KURENAI VILLAGE 

3) MANGOLPURI INDUSTRIAL AREA-NEW MULTAN NAGAR 

4) OKHLA INDUSTRIAL AREA 

5) LOTUS TEMPLE-KALKAJI MANDIR-NEHRU PLACE 

6) UDYOG MARG-DALLUPURA MARG 

7) DR BARMAN MARG 

8) VISHWAKARMA NAGAR 

9) DR LOHIA-RAMPURA VILLAGE-TRI NGAR-SHAKTI NAGAR 

10) ASHOK VIHAR POLICE STATION ROAD 

11) DILKHUSH BAGH INDUSTRIAL AREA 

12) STYAWATI COLLEGE 

13) DR. HEDGEWAR MARG 

14) PEERAGARHI UDYOG NAGAR 

15) RAMA ROAD INDUSTRIAL AREA-NAJAFGARH ROAD 

16) NAYI BASTI-THAKABAPA NAGAR 

17) SHALIMAR BAGH INDUSTRIAL AREA 
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18) BADLI INDUSTRIAL AREA 

19) MAYAPURI INDUSTRIAL AREA PHASE 1 

20) JHILMIL METRO STATION 

21) JHARODA MAJRA BURARI 

22) JHANGIR PURI VILLAGE 

23) KADI VIHAR 

24) ROSHAN PURA-ROSHAN GARDEN-NAJAFGARH NANGLO ROAD 

 

WINTER (Dec-Jan-Feb) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) BAWANA 

2) SHAHPUR GARHI VILLAGE-RAZA PUR VILLAGE-BHOR GARH VILLAGE-

KURENAI VILLAGE 

3) SOM BAZAR ROAD-BEGAMPUR VILLAGE-PEHLADPUR ROAD 

4) BADLI INDUSTRIAL AREA-SAHIBABAD DAIRY BLOCK B 

5) SHALIMAR BAGH INDUSTRIAL AREA 

6) SANJAY NAGAR 

7) DR. KN KATJU MARG ROHINI 

8) DR LOHIA-RAMPURA VILLAGE-TRI NGAR-SHAKTI NAGAR 

9) ASHOK VIHAR POLICE STATION ROAD 

10) DR. HEDGEWAR MARG-NEW MULTAN NAGAR BLOCK E 

11) JJ COLONY 1 KAVITA COLONY-NANGLOI SULATANPURI ROAD 
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12) BALJIT NAGAR 

13) RAMA ROAD INDUSTRIAL AREA-NAJAFGARH ROAD 

14) DR BARMAN MARG-MADHU VIHAR 

15) INDANE GAS FACTORY 

16) OKHLA INDUSTRIAL AREA 

17) LOTUS TEMPLE-KALKAJI MANDIR-NEHRU PLACE 

18) JHARODA MAJRA BURARI 

19) JHANGIR PURI VILLAGE-WEST SANT NAGAR 
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Annexure IV: Forecast for 2019 PM10, PM2.5, O3, NO2 

 

NO2 (Arranged from Day0 to Day4) 
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O3 (Arranged from Day0 to Day4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



Evaluation of modeling techniques for air quality management in Delhi 

  147

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Evaluation of modeling techniques for air quality management in Delhi 

  148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Evaluation of modeling techniques for air quality management in Delhi 

  149

PM10 (Arranged from Day0 to Day4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Evaluation of modeling techniques for air quality management in Delhi 

  150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Evaluation of modeling techniques for air quality management in Delhi 

  151

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PM2.5 (Arranged from Day0 to Day4) 
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About TERI 

 

A unique developing country institution, TERI is deeply committed to every 

aspect of sustainable development. From providing environment-friendly 

solutions to rural energy problems to helping shape the development of the 

Indian oil and gas sector; from tackling global climate change issues across 

many continents to enhancing forest conservation efforts among local 

communities; from advancing solutions to growing urban transport and air 

pollution problems to promoting energy efficiency in the Indian industry, the 

emphasis has always been on finding innovative solutions to make the world a 

better place to live in. However, while TERI’s vision is global, its roots are firmly 

entrenched in Indian soil. All activities in TERI move from formulating local- and 

national-level strategies to suggesting global solutions to critical energy and 

environment-related issues. TERI has grown to establish a presence in not only 

different corners and regions of India, but is perhaps the only developing country 

institution to have established a presence in North America and Europe and on 

the Asian continent in Japan, Malaysia, and the Gulf. 

 

TERI possesses rich and varied experience in the electricity/energy sector in 

India and abroad, and has been providing assistance on a range of activities to 

public, private, and international clients. It offers invaluable expertise in the 

fields of power, coal and hydrocarbons and has extensive experience on 

regulatory and tariff issues, policy and institutional issues. TERI has been at the 

forefront in providing expertise and professional services to national and 

international clients. TERI has been closely working with utilities, regulatory 

commissions, government, bilateral and multilateral organizations (The World 

Bank, ADB, JBIC, DFID, and USAID, among many others) in the past. This has 

been possible since TERI has multidisciplinary expertise comprising of 

economist, technical, social, environmental, and management. 

 


